期刊文献+

A Multi-objective Genetic Algorithm Bas on Individual Density Distance

下载PDF
导出
摘要 The uniform and extension distribution of the optimal solution are very important criterion for the quality evaluation of the multi-objective programming problem. A genetic algorithm based on agent and individual density is used to solve the multi-objective optimization problem. In the selection process, each agent is selected according to the individual density distance in its neighborhood, and the crossover operator adopts the simulated binary crossover method. The self-learning behavior only applies to the individuals with the highest energy in current population. A few classical multi-objective function optimization examples were used tested and two evaluation indexes U-measure and S-measure are used to test the performance of the algorithm. The experimental results show that the algorithm can obtain uniformity and widespread distribution Pareto solutions.
出处 《国际计算机前沿大会会议论文集》 2017年第2期103-104,共2页 International Conference of Pioneering Computer Scientists, Engineers and Educators(ICPCSEE)
  • 相关文献

参考文献4

二级参考文献45

  • 1曾三友,魏巍,康立山,姚书振.基于正交设计的多目标演化算法[J].计算机学报,2005,28(7):1153-1162. 被引量:36
  • 2雷德明,吴智铭.基于个体密集距离的多目标进化算法[J].计算机学报,2005,28(8):1320-1326. 被引量:23
  • 3郑金华,蒋浩,邝达,史忠植.用擂台赛法则构造多目标Pareto最优解集的方法[J].软件学报,2007,18(6):1287-1297. 被引量:54
  • 4Vadde K K, Syrotiuk V R, Montgomery D C. Optimizing Protocol Interaction Using Response Surface Methodology [J]. IEEE Trans on Mobile Computing, 2006, 5(6) : 627-639.
  • 5Leung Yiuwing, Wang Yuping. An Orthogonal Genetic Algorithm with Quantization for Global Numerical Optimization [J]. IEEE Trans on Evolutionary Computation, 2001, 5(1): 41-53.
  • 6Kazarlis S A, Papadakis S E, Theocharis J B, et al. Micro Genetic Algorithms as Generalized Hill-climbing Operators for GA Optimization [J]. IEEE Trans on Evolutionary Computation, 2001, 5(3) : 204-217.
  • 7Zhong Weieai, Liu Jing, Xue Mingzhi, et al. A Multiagent Genetic Algorithm for Global Numerical Optimization [J]. IEEE Trans on Systems, Man and Cybernetics, 2004, 34(2): 1128-1141.
  • 8Liu Jiming, Han Jing, Tang Y Y. Multi-agent Oriented Constraint Satisfaction [J]. Artificial Intelligence, 2002, 136(1) : 101-144.
  • 9Schaffer J.D.. Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of the lst International Conference on Genetic Algorithm, Lawrence Erlbaum Associates, Hillsdale, 1985, 93~100.
  • 10van Veldhuizen D.A., Lamont G.B.. Multiobjective evolutionary algorithms: Analyzing the state-of-the-art. Evolutionary Computation, 2000, 8(2): 125~147.

共引文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部