期刊文献+

基于近似等距投影和支持向量机的滚动轴承故障诊断 被引量:19

Fault diagnosis of rolling bearings based on near-isometric projection and support vector machine
下载PDF
导出
摘要 为了有效的实现滚动轴承的故障诊断,提出基于近似等距投影和支持向量机的滚动轴承故障诊断方法。该方法首先使用高斯随机投影矩阵对数据进行降维投影得到压缩数据,根据近似等距投影性质压缩数据能够保持原始信号的结构;然后从压缩数据中提取压缩域特征并作为支持向量机的输入,建立滚动轴承故障诊断模型,实现轴承的故障诊断。使用不同状态的轴承实测数据进行验证,结果表明该方法能够获得准确的结果。 A new method based on near-isometric projection and support vector machine was proposed for fault diagnosis of rolling bearings.Firstly,Gaussian random projection matrix was utilized to do dimension reduction projection for the signal data to obtain the compressed data.According to the near-isometric projection property,the compressed data kept the structure of the original signals.Then the compressed domain features were extracted from the compressed data,they were taken as the input of a support vector machine to establish the fault diagnosis model of rolling bearings and realize fault diagnosis of rolling bearings.The actual measured data of rolling bearings in different faulty states were used to verify the new method.Results demonstrated the correctness and effectiveness of the proposed method.
作者 刘畅 伍星 刘韬 柳小勤 LIU Chang;WU Xing;LIU Tao;LIU Xiaoqin(College of Mechanical & Electrical Engineering, Kunming University of Science & Technology, Kunming 650500, China)
出处 《振动与冲击》 EI CSCD 北大核心 2018年第5期234-239,共6页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(51405211)
关键词 滚动轴承 故障诊断 近似等距投影 支持向量机 rolling bearing fault diagnosis near-isometric projection support vector machine
  • 相关文献

参考文献1

二级参考文献10

  • 1MING Y, CHEN J, DONG G M. Weak fault featureextraction of rolling bearing based on cyclic Wiener filterand envelope spectrum[J]. Mechanical System and SignalProcessing,2011, 25: 1773-1785.
  • 2QIU H, JAYL, LIN J? et al. Wavelet filter-based weaksignature detection method and its application on rollingbearing element bearing prognosdcs[J]. Journal of SoundandWjration, 2006,289: 1066-1090.
  • 3BIN G F, GAO J J, LI X J. Early fault diagnosis ofrotating machinery based on wavelet packets-empiricalmode decomposition feature extraction and neuralnetwoik[J]. Mechanical System and Signal Processing,2012,27: 696-711.
  • 4WALDEN A T_ Non-Gaussian reflectivity, entropy anddeconvolution[J]. Geophys, 1985,50(12): 2862-2888.
  • 5WIGGINS R A. Minimum entropy deconvolution,geophys[J]. Exploration,1978, 16: 21-35.
  • 6ANTONI J,BONNARDOT F, RAAD A. Cyclostationarymodeling of rotating machine vibration signals[J].Mechanical System and Signal Processings 2004, 18(6):1285-1314.
  • 7RANDALL R B, ANTONI J, CHOBSAARD S. Therelationship between spectral correlation and envelopewlysis in the diagnostics of beaiing faults and othercyclostationaiy machine signals[J]. Mechanical Systemsand Signal Processing, 2001,15(5): 945-962.
  • 8曾庆虎,邱静,刘冠军,张勇.基于小波相关滤波法的滚动轴承早期故障诊断方法研究[J].机械科学与技术,2008,27(1):114-118. 被引量:17
  • 9崔玲丽,康晨晖,胥永刚,高立新.滚动轴承早期冲击性故障特征提取的综合算法研究[J].仪器仪表学报,2010,31(11):2422-2427. 被引量:28
  • 10郑海波,陈心昭,李志远.基追踪降噪及在齿轮故障诊断中的应用[J].振动.测试与诊断,2003,23(2):128-130. 被引量:4

共引文献139

同被引文献158

引证文献19

二级引证文献210

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部