期刊文献+

基于CdS敏化Fe∶TiO2纳米片的光电传感器对Cu2+的检测 被引量:6

A Photoelecteochemical Sensor Based on CdS Sensitized Fe∶TiO_2 Nanosheets for Determination of Cu^(2+)
下载PDF
导出
摘要 以钛酸四丁酯(C_(16)H_(36)O_4Ti)和三氟化铁(FeF_3)为原料,用水热法制备了铁掺杂二氧化钛(TiO_2)纳米片,并将其修饰ITO电极表面。通过连续离子吸附与反应(SILAR)法制备了ITO/Fe∶TiO_2/Cd S光电传感器,并用于Cu^(2+)的检测。Fe^(3+)的掺杂使TiO_2的带隙宽度变窄,对光的吸收产生红移,基于CdS的敏化效应,与TiO_2结合后拓宽了可见光的吸收利用率,降低了电子-空穴的复合率,使光电信号显著增强。在0.2~4.0μmol/L和4.0~80.0μmol/L范围内,Cu^(2+)浓度与传感器检测的电流值呈良好的线性关系,检出限为85 nmol/L(S/N=3)。将传感器分别用于桶装水、自来水、邕江水中Cu^(2+)的测定,加标回收率为94%~111%。 Iron-doped titanium dioxide nanosheets was prepared by hydrothermal method using tetrabutyl titanate( C_(16)H_(36)O_4Ti) and iron trifluoride( FeF_3) and modified on ITO electrode. ITO/Fe ∶ TiO_2/Cd S photoelectrochemical sensor was fabricated by successive ionic layer absorption and reaction( SILAR) method for determination of copper ion. The band gap of electode material was narrowed by iron doped TiO_2 nanosheets,which made its absorption red-shifted and its response range of light was magnified. Based on the sensitization effect of Cd S,the absorption and utilization of visible light of sensor was significantly enhanced and the photoelectric signal was amplified via reducing the recombination of electrons and holes. The sensor displayed excellent analytical performance for detection of copper ion with linear range of 0.2-4.0 μmol/L and4.0-80.0 μmol/L and with the detection limit of 85 nmol/L. The sensor was used to detect copper ion in tap water,drinking water and Yongjiang river water with recoveries ranging from 94% to 111%.
出处 《分析化学》 SCIE EI CAS CSCD 北大核心 2018年第2期232-238,共7页 Chinese Journal of Analytical Chemistry
基金 本文系国家自然科学基金项目(Nos.21365004,21065001)、广西自然科学基金重点项目(No.2013GXNSFDA019006)、广西高等学校高水平创新团队及卓越学者资助计划(No.桂教人[2014]7号)和广西民族大学研究生教育创新计划项目(No.gxun-chxps201684,gxun-chxzs2016125)资助。
关键词 二氧化钛纳米片 光电传感器 铜离子 光电信号 Titanium dioxide nanosheets Photoelectrochemical sensor Copper ion Photoelectric signal
  • 相关文献

参考文献4

二级参考文献120

  • 1Wang G L, Xu J J, Chen H Y. Sci China SerB-Chem. , 2009, 52(11) : 1789-1800.
  • 2Dong D, Zheng D, Wang F Q, Yang X-Q, Wang N, Li Y G, Guo L H, Cheng J. Anal. Chem. , 2004, 76(2) : 499-501.
  • 3Tu W, Lei J, Wang P, Huang X J. Chem. Eur. J, 2011, 17(34) : 9440-9447.
  • 4Chen X, Lee K A, Ha E M, Lee K M, Seo Y Y, Choi H K, Kim H N, Kim M J, Cho C S, Lee S Y, Lee W Z, Yoon J. Chem. Commun. , 2011, 47(46) : 12515-12517.
  • 5An Y R, Tang L L, Jiang X L. Chem. Eur. J, 2010, 16(48) : 14439-14446.
  • 6Ding C, Li H, Li X, Zhang S. Chem. Commun. , 2010, 46(42) : 7990-7992.
  • 7Zhang X, Zhao Y, Li S, Zhang S. Chem. Commun. , 2010, 46(48) : 9173-9175.
  • 8Long Y T, Kong C, Li D W. Small, 2011, 7(12) : 1624-1628.
  • 9Snchez S, Rold,4n M, Prez S, Ftbregas E. Anal. Chem. , 2008, 80(17) : 6508-6514.
  • 10Guo S L, Feng Y, Huang X J. Anal. Chem. , 2009, 81(23) : 9730-9736.

共引文献32

同被引文献23

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部