期刊文献+

基于内容的加权粒度序列推荐算法 被引量:18

A content-based weighted granularity sequence recommendation algorithm
下载PDF
导出
摘要 为了提高个性化推荐系统的准确率,提出了一种基于内容的加权粒度序列推荐算法。通过分析项目属性关系将项目粒度化,计算每个粒度的贡献度得到项目特征矩阵。再根据用户行为信息生成用户粒度序列并进行粒度映射,利用Apriori算法提取出用户偏好矩阵。最后将项目特征矩阵和用户偏好矩阵做乘积运算,其结果代入改进的sigmoid函数中进行喜好概率预测,从而完成Top-N项目推荐。实验选取MovieLens数据集,结果表明基于内容的加权粒度序列的推荐算法准确率达到72.27%,高于当前流行的推荐算法;在效率方面,推荐时间少于相同用户数量下的协同过滤推荐算法;综合测度评分为0.393,充分验证了算法的整体性能优于其他推荐算法。 In order to improve the accuracy of personalized recommendation system,a content-based weighted granularity sequence recommendation algorithm is proposed.The item is turned to be granu-larities by analyzing the relationship between the item properties.The item characteristic matrix is ob-tained by calculating the contribution degree of each granularity.Then,according to the information of user behaviors,the user granularity sequence is generated and the granularity mapping is performed.The user preference matrix is extracted by using Apriori algorithm.Finally,the item characteristic ma-trix is multiplied by the user preference matrix,and the result is introduced into the improved sigmoid function to predict the preference probability,thus completing the Top-N item recommendation.Experi-ments on MovieLens dataset show that the content-based of weighted granularity sequence recommenda-tion algorithm achieves an accuracy rate of 72.27%,which is higher than the accuracy rate of the current popular recommendation algorithms.In terms of efficiency,its recommended time is less than that of the collaborative filtering recommendation algorithm with the same number of users.The Fl-score is 0.393,fully verifying that the overall performance of the proposal is better than that of other recommendation algorithms.
作者 王光 张杰民 董帅含 夏帅 WANG Guang;ZHANG Jie-min;DONG Shuai-han;XIA Shuai(School of Software,Liaoning Technical University,Huludao 125105,China)
出处 《计算机工程与科学》 CSCD 北大核心 2018年第3期564-570,共7页 Computer Engineering & Science
基金 国家自然科学基金(61401185)
关键词 推荐系统 加权粒度序列 贡献度 粒度映射 偏好矩阵 recommendation system sequence of weighted granularity degree of contribution granularity mapping preference matrix
  • 相关文献

参考文献8

二级参考文献48

  • 1邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 2张光卫,李德毅,李鹏,康建初,陈桂生.基于云模型的协同过滤推荐算法[J].软件学报,2007,18(10):2403-2411. 被引量:196
  • 3Adomavieius G,Tuzhilin A. Toward the next generation of rec- ommender systems:A survey of the state-of-the-art and possible extm:sions[J]. IEEE Transactions on Knowledge and Data Engi neering, 2005,17(6) : 734-749.
  • 4Balabanovic M, Shoham Y. Fab: content-based, collaborative rec- ommendation[J]. Communications of the ACM, 1997,40(3) : 66- 72.
  • 5Melville P, Mooney R, Nagarajan R. Content-boosted collabora- tive filtering for improved recommendations[C]//Proceedings of the National Conference on Artificial Intelligence. AAAI Press, MIT Press, 1999(2002) : 187-192.
  • 6Wang C, Cao L, Wang M, et al. Coupled nominal similarity in unsupervised learning[C]//CIKM, ACM. 2011 : 973-978.
  • 7Yu Y,Wang C,Gao Y, et al. A Coupled Clustering Approach for Items Recommendation[C]// The 17th Pacific-Asia Conference on Know/edge Discovery and Data Mining. Gold Coast, Austra- lia,2013.
  • 8Boriah S, Chandola V, Kumar V, Similarity measures for cate- gorical data: a comparative evaluation[C]//SDM 2008. 2008: 243-254.
  • 9Sarwar B, Karypis G, Konstan J, et al. Item-based collaborative filtering recommendation algorithms[C]//WWW. ACM, 2001 : 285-295.
  • 10http://www, grouplens, org/node/73.

共引文献173

同被引文献191

引证文献18

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部