期刊文献+

基于深度学习的输变电工程造价异常识别与应用 被引量:6

Abnormal Recognition and Application of Power Transmission and Transformation Project Cost Based on Depth Learning
下载PDF
导出
摘要 针对输变电工程造价数据异常监测难、分析效率低的问题,采用深度学习这一先进的人工智能技术,结合对比分析方法,构建并设计了一套包含图像预处理模块、无监督学习模块、字符检测模块和文字识别模块四部分内容的造价异常识别系统。通过无监督式的特征训练学习,该系统可以有效识别输变电工程各个阶段造价数据存在的异常信息。该系统的应用实现了对造价数据的有效监测,提升了造价数据的分析效率,对电力企业有较强的实用价值。 With the advanced artificial intelligence technology,a set of cost anomaly recognition system including image preprocessing module,unsupervised learning module,character detection module and character recognition module is constructed and designed combined with the comparative analysis method.With the unsupervised feature training,the system can effectively identify the abnormal information of the cost data in each stage of power transmission and transformation project.The application of the system to achieve the effective monitoring of the cost data to enhance the cost of data analysis efficiency,the power companies have a strong practical value.
出处 《工业控制计算机》 2018年第1期117-118,共2页 Industrial Control Computer
关键词 深度学习 卷积神经网络 输变电工程 造价 异常识别 depth learning convolution neural network power transmission and transformation project cost abnormal recognition
  • 相关文献

参考文献3

二级参考文献28

  • 1周建华,胡敏强.自构形神经网络在变压器故障诊断中的应用[J].电工技术学报,2004,19(9):77-81. 被引量:5
  • 2王建梅,覃文忠.基于L-M算法的BP神经网络分类器[J].武汉大学学报(信息科学版),2005,30(10):928-931. 被引量:53
  • 3张利容.完善我国电力工程造价管理机制的措施与对策.电网技术,2011,35(2):320-324.
  • 4ANGELIS L, STAMELOS I, MORISIO M. Building a software cost estimation model based on categorical dataC // Proceedings of 2001 the 7th International Software Metrics Symposium, April, 04-06, 2001, London, UK. Piscataway: IEEE Press, 2001 : 4-15.
  • 5ASHWORTH A. Accuracy in estimating E J 1. Chartered Quantity Surveyor, 1982(4) : 191-194.
  • 6LIN Y H, LEE P C, CHANG T P. Practical expert diagnosis model based on the grey relational analysis technique [J ]. Expert Systems with Applications, 2009, 36(2) :1523 1528.
  • 7LIN Y H, LEE P C, CHANG T P, et al. Practical expert diagnosis model based on the grey relational analysis technique [ J ]. Expert Systems with Applications, 2011, 36(6) .7302-7306.
  • 8DINGS F, XU L, SU C Y, et al. An optimizing method of RBF neura}, network based on genetic algorithm [J. Neural Computing and Applications, 2012,21 (2) : 333-336.
  • 9MANIK P D, VIVEK S S. Predicting effective viscosity of magnetite ore slurries by using artificial neural network J. Powder Technology, 2012, 219: 264-270.
  • 10PENG Y, ZHOU H C. Fuzzy optimization neural network model based on LM algorithm [J. Journal of Harbin Institute of Technology, 2010, 17(3) :431-436.

共引文献36

同被引文献81

引证文献6

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部