期刊文献+

利用亮度排序的快速鲁棒特征描述与匹配算法 被引量:2

Speeded Up Robust Feature Descriptors and Matching Algorithm Based on Brightness Order
下载PDF
导出
摘要 针对快速鲁棒特征SURF描述符匹配精度不高且对光照变化不具有鲁棒性的问题,提出利用亮度排序的快速鲁棒特征描述与匹配算法。该方法在SURF算法的基础上,对特征邻域像素的灰度值进行排序和分段。通过建立索引表对每段的像素进行表示形成描述子,再将每段的描述子串联形成特征描述符对影像进行匹配。实验表明,该算法较SURF算法匹配精度高,匹配可靠性方面提高74.7%,且对线性及非线性光照变化均具有较好的鲁棒性。 A speeded up robust feature descriptors and matching algorithm based on brightness order is designed to overcome the problems of precision and robustness of the original SURF algorithm.Pixels are sorted and segmented according to gray values in the features support region based on the SURF algorithm.By establishing an index table,each segment of the pixel is represented to form a descriptor,and each segment of the descriptor is serially connected to form a feature descriptor to match the image.The experimental results show that the proposed method is more higher matching accuracy whose matching reliability is improved by 74.4%,and better robustness to linear or nonlinear illumination changes compared with SURF.
作者 乔玉庆 耿则勋 徐志军 卢兰鑫 QIAO Yuqing;GENG Zexun;XU Zhijun;LU Lanxin(Information Engineering University,Zhengzhou 450001,China;63883 Troops,Luoyang 471000,China)
机构地区 信息工程大学 [
出处 《测绘科学技术学报》 CSCD 北大核心 2017年第6期617-621,共5页 Journal of Geomatics Science and Technology
基金 国家自然科学基金项目(11373043)
关键词 SURF算法 亮度排序 特征匹配 索引表 特征描述符 SURF algorithm brightness order features matching index table feature descriptor
  • 相关文献

参考文献1

二级参考文献16

  • 1LOWED G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91- 110.
  • 2TUYTELAARS T, VAN GOOL L. Matching widely separated views based on atYme invariant regions[J]. International Journal of Computer Vision, 2004, 59(1): 61-85.
  • 3NISTER D, STEWENIUS H. Scalable recognition with a vocabulary tree[A]. IEEE Conference on Computer Vision and Pattern Recogni- tion[C]. New York, NY, USA, 2006. 2161-2168.
  • 4BROWN M, LOWED G. Automatic panoramic image stitching using invariant features[J]. International Journal of Computer Vision, 2007, 74(1): 59-73.
  • 5KE Y, SUKTHANKAR R. PCA-SIFT: A more distinctive representation for local image descriptors[A]. IEEE Conference on Computer Vision and Pattern Recognition[C]. Washington, DC, USA, 2004. 506-513.
  • 6MIKOLAJCZYK K, SCHMID C. A performance evaluation of local descriptors[J]. IEEE Transaction on Pattern Analysis and Machine In- telligence, 2005,27(10): 1615-1630.
  • 7BAY H, TUYTELAARS T, VAN GOOL L. Surf: Speeded up Robust Features[M]. Berlin Heidelberg. Springer-Vedag, 2006.
  • 8HEIKKILA M, PIETIKAINEN M, SCHMID C. Description of inter- est regions with local binary patterns[J]. Pattern recognition, 2009, 42(3): 425-436.
  • 9GUPTA R, PATIL H, MITTAL A. Robust order-based methods for feature description[A]. IEEE Conference on Computer Vision and Pattern Recognition [C]. San Francisco, CA, USA, 2010. 334-341.
  • 10TOLA E, LEPETIT V, FUA P. Daisy: An efficient dense descriptor applied to wide-baseline stereo[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2010, 32(5): 815-830.

同被引文献15

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部