期刊文献+

基于组合策略的Webshell检测框架 被引量:5

Multi-strategy based framework for Webshell detection
下载PDF
导出
摘要 为解决Webshell检测效果不佳的问题,分析其特点,综合考虑指纹匹配抗混淆能力、代码混淆识别能力及检测准确率3个因素,提出基于标识符分词的混淆检测算法、基于语法树的指纹算法及一套污点分析检测机制,在此基础上构建一种基于组合策略的检测框架。污点分析机制中,在污点分析技术的基础上,加入编码函数及危险函数识别,对危险函数的参数进行危险分类标记,改进现有数据流静态分析方法。实验结果表明,该框架的Webshell整体检测率与混淆Webshell的检测率优于大部分测试软件。 To solve the problem that the result of Webshell detection is not very ideal,characteristics of Webshell were analyzed,and factors such as the resisting ability of fingerprint,code obfuscation detection and overall detection rate were taken into consideration.An obfuscation detection algorithm based on identifier word segmentation and a Webshell fingerprint algorithm were proposed,and a taint analysis detection mechanism was implemented.Based on all these above,a detection framework was designed.The taint analysis detection mechanism was combined with the traditional taint analysis method,identification of encoding functions and dangerous functions were added,dangerous classification was done to functions’vulnerable parameters and data flow static analysis method was adjusted.Results of experiments show that the overall Webshell detection rate and obfuscated Webshell detection rate are better than most of the tested software.
作者 王文清 彭国军 陈震杭 胡岸琪 WANG Wen-qing;PENG Guo-jun;CHEN Zhen-hang;HU An-qi(School of Computer,Wuhan University,Wuhan 430072,China;Key Laboratory of Aerospace Information Security and Trusted Computing,Wuhan University,Wuhan 430072,China)
出处 《计算机工程与设计》 北大核心 2018年第4期907-911,917,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(U1636107 61202387 61373168)
关键词 Webshell检测 标识符分词 混淆检测 指纹算法 污点分析 Webshell detection identifier word segmentation obfuscation detection fingerprint algorithm taint analysis
  • 相关文献

参考文献4

二级参考文献31

  • 1李万新.Web日志数据挖掘在服务器安全方面的应用[J].中山大学学报论丛,2007,27(5):116-118. 被引量:5
  • 2刘冰.多类SVM分类算法的研究和改进.电脑知识与技术,2007,(6):1590-1593.
  • 3Xiao Yao. Large and Medium-sized Network Intrusions Cases Research[J]. Publishing House Of Electronics Industry, 2010,(10):301-310.
  • 4J. Ross Quinlan. C4. 5: programs for machine learning[M]. San Francisco: Morgan Kaufmann, 1993.
  • 5Yung-Tsung Hou, Yimeng Chang, Tsuhan Chen.Malicious web content detection by machine learning[J]. Expert Systems with Applications,2010,37(1):55-60.
  • 6Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machines[C]//Proceedings of IEEE Workshop on Neural Networks for Signal Processing. Amelia Island, USA: IEEE Press, 1997: 276-285.
  • 7Lin H T, Lin C J, Weng R C. A note on Plat tps probabilistic outputs for support vector machines[J]. Machine Learning, 2007, 68 (3): 267-276.
  • 8Brinker K. On multiclass active learning with support vector machines[C]//Proceedings of European Conference on Artificial Intelligence. 2004: 969-970.
  • 9Yuan X, Lai W, Mei T , et al. Automatic video genre categorization using hierarchical SVM[C]//IEEE International Conference on Image Processing. Atlanta: IEEE Press, 2006: 2905-2908.
  • 10Tong S , Chang. E Support vector machine active learning for image ret rieval[C]//Proceedings of the 9th ACM International Conference on Multimedia. Ottawa, Canada: ACM Press, 2001, 9: 107-118.

共引文献44

同被引文献39

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部