期刊文献+

基于深度学习的翼型气动系数预测 被引量:40

Aerodynamic coefficient prediction of airfoils based on deep learning
下载PDF
导出
摘要 提出了一种基于深度学习的翼型气动系数预测方法,有效克服了以往方法依赖翼型设计参数以及算法复杂度随预测精度的提高呈指数级增长等缺点。首先,介绍了卷积神经网络(CNN)的基本原理、网络机构以及训练方法,给出了训练样本数、批量大小、批次数量、迭代次数、循环次数的关系;其次,设计了针对翼型图像处理的CNN结构,随机选择6000个样本对该网络进行了训练;最后,对561个翼型的法向力系数进行了预测,并与部分参数法方法的预测结果进行了比较。仿真结果表明,提出的图形化预测方法具有很高的预测精度。 To prevent the dependence of prediction methods on design parameters and the exponential increase of algorithm complexity with increasing prediction accuracy,an aerodynamic coefficient prediction method of airfoils based on deep learning is proposed.First,the fundamental theory,network structure and training method of Convolutional Neural Networks(CNN)are introduced.Then,according to the characteristics of airfoil image processing,the structure of CNN model is designed and the parameters are trained by 6000 random samples.Finally,the normal force coefficients of 561 airfoils are predicted and compared with those prediction of some other parameterization methods.The simulation results show that the proposed graphical prediction method has high prediction accuracy.
作者 陈海 钱炜祺 何磊 CHEN Hai;QIAN Weiqi;HE Lei(China Aerodynamics Research and Development Center,Mianyang 621000,China)
出处 《空气动力学学报》 CSCD 北大核心 2018年第2期294-299,共6页 Acta Aerodynamica Sinica
基金 国家自然科学基金(11532016) 中国博士后科学基金项目(2015M582810)
关键词 深度学习 卷积神经网络 翼型 气动系数 预测 回归 deep learning Convolutional Neural Networks(CNN) airfoil aerodynamic coefficient prediction regression
  • 相关文献

参考文献7

二级参考文献224

  • 1牟斌,肖中云,周铸,陈作斌,刘刚.多重网格技术在复杂粘性流场计算中的应用及研究[J].空气动力学学报,2006,24(1):51-54. 被引量:10
  • 2蒲春,孙政顺,赵世敏.Matlab神经网络工具箱BP算法比较[J].计算机仿真,2006,23(5):142-144. 被引量:68
  • 3Hicks R M,Henne P A.Wing Design by Numerical Optimization[J].Journal of Aircraft,1978,15:407-412.
  • 4Sobieczky H.Parametric Airfoils and Wings[A].In K Fujii and G S Dulikravich (Eds.):Notes on Numerical Fluid Mechanics,Vol.68,Wiesbaden:Vieweg,1998.
  • 5Mengistu T T,Ghaly W S.A Geometric Representation of Turbomachinery Cascades Using NURBS[A].AIAA Paper 2002-0318,2002.
  • 6闻新 周露.MATLAB神经网络应用设计[M].北京:科学出版社,2001..
  • 7Certification of transport category airplanes for flight in icing conditions[R]. Advisory Circular 25. 1419-1A.
  • 8GUIDO S BARUZZI, PATRICK LAGACE, MARTIN S AUBE, et al. Development of a shed-ice trajectory simulation in fensap-ice[A]. SAE Aircraft g>. Engine Ic- ing International Conference[C], 2007-01-3360.
  • 9LANKFORD. Aircraft Icing: A pilot's guide to super- cooled drizzle droplets, icing accident case studies, cold weather techiniques[M]. McGraw Hill 2000.
  • 10HSIUNG-WEI YEONG, MICHAEl, PAPADAKIS, KOJI SHIMOI. Ice trajectory and monte carlo analyses for a business jet[R]. AIAA 2009 3973.

共引文献1469

同被引文献291

引证文献40

二级引证文献164

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部