期刊文献+

锥面共形阵列非圆信号2D-DOA估计 被引量:5

2D-DOA estimation on conical conformal array antennas for non-circular signals
下载PDF
导出
摘要 针对常用锥面载体的单曲率特性,结合合理的阵元布局和利用非圆信号非零椭圆协方差特性,提出一种锥面共形阵列天线非圆信号盲极化二维波达方向(two dimensional-direction of arrival,2D-DOA)估计方法。该方法基于非圆-旋转不变子空间(non-circular estimation of signal parameters via rotation invariant technique,NC-ESPRIT),充分利用非圆信号的阵列扩展性,将DOA与极化参数去耦合,在此基础上,对俯仰与方位角度参数分维处理,在未知极化参数的情况下,实现了2D的分维估计。针对相干源情况,推导了锥面共形阵列非圆信号解相干空间平滑算法,通过解相干预处理,保证了所提算法对相干信号的适用性,扩展了算法的应用范围。计算机仿真实验表明,所提方法在信噪比较低(小于10dB)时,较之已有算法大大提升了DOA估计精度,达到了较好的效果。 In view of the single curvature surface of the conical carrier,combining with rationally-placed sensor elements and non-circular signal’s character that its oval covariance matrix is not equal to zero,the method of blind two dimensional-direction of arrival(2D-DOA)estimation on non-circular signals with conical conformal array antennas with respect to polarization diversity is proposed.The parameters of polarization diversity and DOA are decoupled by the method which is based on the idea of non-circular estimation of signal parameters via rotation invariant technique(NC-ESPRIT),thoroughly taking advantage of array augmentation of non-circular signals.On this basis,2D-DOA is realized without knowing the polarization diversity of antennas by separable dimension processing of azimuth and pitch angles.In view of coherent signals,conical conformal array for noncircular signal de-correlation spatial smoothing algorithm is deduced.Applicability for coherent signals is ensured and the application range of the algorithm is extended by preprocessing of de-correlation.The computer simulation demonstrates that the proposed algorithm promotes the accuracy of DOA estimation greatly compared to the existed algorithm at low signal-to-noise ratio(lower than 10 dB)and has better effectiveness.
作者 张羚 郭英 邹峰 齐子森 ZHANG Ling;GUO Ying;ZOU Feng;QI Zisen(School of Information and Navigation,Air Force Engineering University,Xi’an 710077,China;The Office of Military Representatives Stationing in the XAC,Xi’an 710089,China;Unit 94826 of the PLA,Shanghai 200433,China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2018年第5期989-996,共8页 Systems Engineering and Electronics
基金 国家自然科学基金(61601500)资助课题。
关键词 锥面共形阵列天线 虚拟扩展 二维波达方向估计 非圆信号 conical conformal array antenna virtual augment two dimensional direction-of-arrival(2D-DOA)estimation non-circular signal
  • 相关文献

参考文献8

二级参考文献96

  • 1王布宏,王永良,陈辉,郭英.方位依赖阵元幅相误差校正的辅助阵元法[J].中国科学(E辑),2004,34(8):906-918. 被引量:40
  • 2庞伟正,高洪元,王艳丽,曹志华.基于粒子群优化算法的相干信源波达方向估计[J].哈尔滨工程大学学报,2006,27(3):453-456. 被引量:5
  • 3JOSEFSSON L, PERSSON P. Conformal array anten- na theory and design[M]. Canada:Wiley-IEEE Press, 2006.
  • 4WANG Buhong, GUO Ying and WANG Yongliang. Frequency-invariant pattern synthesis of conformal ar- ray with low cross-polarization[J]. IET Microwaves, Antennas & Propagation, 2008, 2(5) : 442-450.
  • 5WANG Buhong, GUO Ying. Array manifold modeling for arbitrary 3D conformal array antenna[C]//Pro- eeedings of 2008 IEEE International Workshop on An- tenna Technology. Chiba, Japan, 2008: 562-565.
  • 6QI Zisen, GUO Ying, WANG Buhong. DOA estima- tion algorithm for conical conformal array antenna [C]//IET 2009 international conference on RADAR. Guilin, China. 20091 1-4.
  • 7SHAN T J, WAX M, KAILATH T. Adaptive beamforming for coherent signals and interference [J]. IEEE Trans. on ASSP, 1985, 33(3): 527- 536.
  • 8WORMS J G. Spatial superresolution with conformal array antennas[C]//Proc. 2000 IEEE Radar Conf. Alexandria, VA, 2000: 723-728.
  • 9HWANG S, SARKAR T K. Direction of Arrival (DOA) estimation using a transformation matrix through singular value decomposition[C]//Proceed- ings of IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetic, 2005, 353-356.
  • 10KIM K, SARKAR T K. DOA estimation utilizing di- rective elements on a conformal surface[C]// Pro- eeedings of IEEE 2003 radar conference, 2003: 91- 96.

共引文献35

同被引文献28

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部