期刊文献+

基于QPSO-MLSSVM算法的拉曼光谱检测四组分调和油含量 被引量:2

Raman Spectra Based on QPSO-MLSSVM Algorithm to Detect the Content of Four Components Blent Oil
下载PDF
导出
摘要 提出了一种运用量子粒子群(quantum-behaved particle swarm optimization,QPSO)算法优化多输出最小二乘支持向量机(multi-output least squares support vector machine,MLSSVM)的新混合优化算法。该算法结合激光拉曼光谱技术可实现对四组分食用调和油中花生油、芝麻油、葵花油和大豆油的快速定量鉴别。采用基线校正去除背景荧光,结合Savitzky-Golay Filters光谱平滑法对原始拉曼光谱进行预处理。构建基于QPSO-MLSSVM混合优化算法的定量分析模型,并采用20个组分组成的预测集对其进行模型校验。实验结果表明,基于QPSO-MLSSVM混合优化算法的定量分析模型对于四组分调和油的预测效果良好,均方差(mean square error,MSE)为0.0241,低于0.05,各油分预测相关系数均高于98%。研究结果充分表明,应用激光拉曼光谱技术结合QPSO-MLSSVM算法,对四组分调和油中各油分进行快速定量检测可行,具备较强的自适应能力和良好的预测精度,可以满足多组分调和油的成分鉴别。 This paper presents a new hybrid optimization algorithm based on the multi-output least squares support vector machine(MLSSVM)which is optimized by quantum-behaved particle swarm optimization(QPSO).The rapid quantitative identification for the peanut oil,sesame oil,sunflower oil and soybean oil in the four-component edible blending oil can be realized with the algorithm combined with laser Raman spectroscopy.The background fluorescence was removed by baseline correction,and Savitzky-Golay filters spectral smoothing method is used for the pretreation of original Raman spectra.The quantitative analysis model based on QPSO-MLSSVM hybrid optimization algorithm is established,and the prediction set composed of 20 components is used to verify the model.The experimentalresult shows that it is effective for the prediction of four-component blendingoil with the quantitative analysis model based on QPSO-MLSSVM hybrid optimization algorithm,and the Mean Square Error(MSE)is 0.024 1,which is less than0.05,the correlation coefficients of each component were above 98%.The results show that it is feasible to detect the content of each oil of four-component blending oil by laser Raman spectroscopy combined with QPSO-MLSSVM algorithm,it has strong adaptive ability and good prediction accuracy that can satisfythe multi-component mixed oil component identification.
作者 张燕君 张芳草 付兴虎 徐金睿 ZHANG Yan-jun;ZHANG Fang-cao;FU Xing-hu;XU Jin-rui(School of Information Science and Engineering,The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province,Yanshan University,Qinhuangdao066004,China)
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2018年第5期1437-1443,共7页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金(11673040,61675176),河北省自然科学基金(F2014203125),燕山大学“新锐工程”人才支持计划项目资助
关键词 拉曼光谱 食用调和油 量子粒子群算法 最小二乘支持向量机 定量检测模型 Raman spectroscopy Edible blend oil Quantum particle swarm optimization(QPSO) Least squares support vector machine(SVM) Quantitative detection model
  • 相关文献

参考文献1

二级参考文献6

共引文献5

同被引文献24

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部