期刊文献+

基于深度学习的毫米波和亚毫米波成像仪的图像增强技术 被引量:4

Image Enhancement Technique of Millimeter and Sub-Millimeter Sounding/Imager Based on Deep Learning
下载PDF
导出
摘要 风云四号卫星毫米波和亚毫米波成像仪(MMSI)数据根据采样方式分为过采样和非过采样数据。由于采样方式的影响,非过采样数据在采样过程中会有一定的信息损失。为解决采用简单的线性插值方法做精细化处理时提升精度有限问题,采用基于深度学习的方法增强MMSI亮温图像,设计卷积神经网络重建风云四号卫星MMSI的亮温图像和风云三号卫星微波成像仪亮温图像。实验结果显示:相比传统的双三次插值方法,在风云三号卫星微波成像仪亮温图像样本上峰值信噪比提升了1.13dB,结构相似度提升了0.01。实验结果表明:对于非过采样亮温数据,采用基于深度学习的方法增强图像具有更高的精度,同时可在其他微波探测仪数据中使用,具有很强的普适性。 FY-4 millimeter and sub-millimeter sounding/imager(MMSI)data are divided into oversampling and non-oversampling data according to the sampling model.However,non-oversampling data have a certain information loss during the sampling process.The traditional method employs the linear interpolation to perform the fine processing,but the accuracy improvement is limited.In this paper,a method based on deep learning and convolution neural network is used to enhance the brightness temperature images of FY-4 MMSI and FY-3 microwave imager.The experimental results show that the peak signal-to-noise ratio is increased by 1.13 dB and the structure similarity is increased by 0.01 for FY-3 microwave imager,compared with the traditional bicubic interpolation method.The experimental results indicate that the image enhancement based on the deep learning method is more accurate than that based on the bicubic method.It can also be applied to other microwave detector data due to strong universality.
作者 胡伟东 张文龙 安大伟 王璐 陈实 岳芬 LIGTHART Leo P. HU Weidong;ZHANG Wenlong;AN Dawei;WANG Lu;CHEN Shi;YUE Fen;LIGTHART Leo P.(Beijing Institute of Technology,Beijing 100081,China;National Satellite Meteorological Center,Beijing 100142,China;Delft University of Technology,Delft 2628 CN,Netherlands)
出处 《上海航天》 CSCD 2018年第2期13-19,共7页 Aerospace Shanghai
基金 国家自然科学基金重大科研仪器项目(61527805) 国家自然基金面上项目(41775030) 教育部高等学校创新引智计划项目(B14010)
关键词 超分辨率 卷积神经网络 双三次插值 毫米波和亚毫米波成像仪 图像增强 非过采样数据 亮温图像 super-resolution convolutional neural network bicubic interpolation millimeter and sub-millimeter sounding/imager image enhancement non-oversampling data brightness temperature image
  • 相关文献

同被引文献54

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部