期刊文献+

一种基于改进视觉背景提取算法的前景检测 被引量:5

An improved visual background extraction algorithm for foreground detection
下载PDF
导出
摘要 针对视觉背景提取ViBe算法在前景检测中存在的鬼影现象且长时间难以消除的缺点,提出一种改进的视觉背景提取算法。首先,在视频前n帧序列的帧差法中,引入大津(OTSU)算法求自适应阈值,以分割出更为准确的前景区域;其次,利用去除前景区域的前n帧图像合成一张尽量少的包含前景区域的样本图像;最后利用扩展的邻域范围在合成的样本图像中对模型初始化,并把扩大的范围用在ViBe背景模型更新阶段。该算法与各种经典算法在大量视频库中进行了对比实验,仿真结果表明,改进的ViBe算法能快速消除鬼影对前景检测的影响,前景检测更为准确。 Visual background extraction algorithm(ViBe)for foreground detection has the disadvantage that there is ghost and it is difficult to eliminate it for a long time,so an improved visual background extraction algorithm is proposed.Firstly,being introduced in the first sequence with n video frames,the OTSU algorithm can calculate an adaptive threshold for the frame difference method so as to get a more accurate foreground region.Secondly,a sample image is synthesized by using the first n frame images without foreground regions.Finally,the model is initialized with the extended neighborhood range in the synthesized sample images,and the ViBe background model can be updated by the extended domain.The proposed algorithm is compared with various classical algorithms in a large number of video databases.Simulation results show that the improved ViBe algorithm can quickly eliminate the effect of ghost on foreground detection,so the foreground detection is more accurate.
作者 陈树 丁保阔 CHEN Shu;DING Bao-kuo(College of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China)
出处 《计算机工程与科学》 CSCD 北大核心 2018年第4期673-680,共8页 Computer Engineering & Science
关键词 ViBe算法 鬼影 前景检测 背景减除法 OTSU算法 visual background extractor algorithm ghost foreground detection background subtraction method OTSU algorithm
  • 相关文献

参考文献6

二级参考文献70

  • 1陈亮,陈晓竹,范振涛.基于Vibe的鬼影抑制算法[J].中国计量学院学报,2013,24(4):425-429. 被引量:21
  • 2李香平,杨兆选.基于虚拟线的视频交通检测新算法[J].电子测量与仪器学报,2005,19(4):30-33. 被引量:6
  • 3Cucchiara R, Grana C, Piccardi M. et al. Detecting Moving Object, Ghosts, and Shadows in Video Streams [J]. IEEE Trans on Pattern Analysis and Machinc Intelligence, 2003. 25 (10) : 1337-1342.
  • 4Calderara S, Melli R, Prati A, et al. Reliable Background Suppression for Complex Scenes[C]//Proc of ACM Workshop on Video Surveillance and Sensor Networks, 2006:211- 214.
  • 5Yang Tao, Pan Quan, Li Stan Z, et al. Multiple Layer Based Background Maintenance in Complex Environment [C]// Proc of the 3rd Int'l Conf on Image and Graphics. 2004:112-115.
  • 6Cheung S C. Kamath C. Robust Background Subtraction with Foreground Validation for Urban Traffic Video[J]. EURASIP Journal on Applied Signal Processing, 2005,14 (1):1-11.
  • 7Ruiz del Solar J ,Shats A,Verschae R. Real-Time Tracking of Multiple Persons[C]//Proc of the 12th lnt'l Conf on Image Analysis and Processing, 2003.
  • 8Yang Tao,l.i Stan Z,Pan Quan,et al. Real-Time and Accurate Segmentation of Moving Objcets in Dynamic Scene[C]//Proc of the ACM 2nd Int'l Workshop on Video Surveillance & Sensor Networks,2004 : 136-143.
  • 9Stauffer C, Grimson W. Learning Patterns of Activity Using Real-Time Tracking[J]. IEEE Trans on Pattern Recognition and Machine Intelligence,2000,22(8):747-757.
  • 10Lee D S. Improved Adaptive Mixture Learning for Robust Video Background Modeling[C]//Proc of IAPR Workshop on Machine Vision for Applications,2002;443-446.

共引文献134

同被引文献42

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部