期刊文献+

一种云工作流任务调度能效优化算法 被引量:6

Energy-efficient optimization algorithm of cloud workflow tasks scheduling
下载PDF
导出
摘要 工作流任务执行时带来的高能耗不仅会增加云资源提供方的经济成本,而且会降低云系统的可靠性。为了满足截止时间的同时,降低工作流执行能耗,提出一种工作流能效调度算法CWEES。算法将能效优化调度划分为三个阶段:初始任务映射、处理器资源合并和任务松驰。初始任务映射旨在通过任务自底向上分级排序得到任务调度初始序列,处理器资源合并旨在通过重用松驰时间合并相对低效率的处理器,降低资源使用数量,任务松驰旨在为每个任务重新选择带有合适电压/频率等级的最优目标资源,在不违背任务顺序和截止时间约束前提下降低工作流执行总能耗。通过随机工作任务模型对算法的性能进行了仿真实验分析。结果表明,CWEES算法不仅资源利用率更高,而且可以在满足截止时间约束下降低工作流执行能耗,实现执行效率与能耗的均衡。 The high energy consumption brought by executing workflow tasks not only increases the economic cost of cloud resource providers,but reduces the realibility of cloud system.In order to meet the deadline and reduce the energy consumption of executing workflow,an energy-efficient workflow scheduling algorithm CWEES is presented.CWEES divides the energy-efficient optimization scheduling into three stages:the initial tasks mapping,the processors resource merging and the tasks slacking.The initial tasks mapping aims to get the intial tasks scheduling orders by using the down-up leveling ordering.The processors resource merging aims to reduce the number of used resources by reclaiming the slack time and merging the relatively inefficient processors.The tasks slacking aims to select the best available resource with appropriate voltage/frequency level for each task so that the total energy consumption is minimal while meeting its sub-deadline.Simulation experiments are constructed to evaluate CWEES’s performance by the random workflow tasks model.The results show that CWEES not only can obtain higher resource utilization,but can reduce the energy consumption of executing workflow,which could achieve the better trade-off between the execution efficiency and the energy consumption.
作者 王国豪 李庆华 刘安丰 WANG Guohao;LI Qinghua;LIU Anfeng(College of Engineering,Lishui University,Lishui,Zhejiang 323000,China;School of Information and Science,Central South University,Changsha 410083,China)
出处 《计算机工程与应用》 CSCD 北大核心 2018年第10期90-98,191,共10页 Computer Engineering and Applications
基金 浙江省教育厅科研备案项目(No.Y201534160) 浙江省公益性应用研究计划项目(No.2016C31G2260015)
关键词 云计算 工作流调度 能效 任务分配 资源合并 cloud computing workflow scheduling energy efficiency task allocation resource merging
  • 相关文献

参考文献4

二级参考文献40

  • 1景维鹏,吴智博,刘宏伟,董剑.支持优先级约束任务的容错调度算法[J].清华大学学报(自然科学版),2011,51(S1):1440-1444. 被引量:4
  • 2Zhang C. An ant colony optimization approach to a grid workflow scheduling problem with various QoS requirements [J]. IEEE Transactions on Systems ,2009,39 ( 1 ) : 100 - 103.
  • 3Chen J J, Yang Y. Adaptive selection of necessary and sufficient checkpoints for dynamic verification of temporal constraints in grid workflow systems[J]. ACM Transactions on Autonomous and Adaptive Systems,2010,2 (2) : 1 - 25.
  • 4Moretti C, Bui H. An abstraction for data-intensive computing on campus grids [J]. IEEE Transactions on Parallel and Distributed Systems,2010,21 ( 1 ) :33 -46.
  • 5Liu K, Jin H, Chen J J, et al. A compromised-time-cost scheduling algorithm in SwinDeW C for instance-intensive cost-constrained workflows on cloud computing platform[J]. International Journal of High Performance Computing Applications,2010,24 (4) :445 - 456.
  • 6Ollveira D, Ogasawara E. An adaptive parallel execution strategy for cloud-based scientific workflows [ J ]. Concurrency and Computation: Practice and Experience, 2012,24 ( 13 ) : 1531 - 1550.
  • 7CHAKRABARTI A, DAMODARAN A, SENGUPTA S. Grid compu- ting security: a taxonomy[J]. IEEE Security & Privacy, 2008, 6 (1) :44-51.
  • 8KOЮDZIEJ J, XHAFA F. Integration of task abortion and security requirements in GA-based meta-heuristics for independent batch gridscheduling[J]. Computers and Mathematics with Applications, 2012, 63(2) : 350-364.
  • 9LIU Hong-bo, ABRANHAM A, SNASEL V, et al. Swarm scheduling approaches for work-flow applications with security constraints in dis- tributed data-intensive computing environments[J]. Information Sci- ences, 2012,192(6) : 228-243.
  • 10WU Zhang-jun, LIU Xiao, NI Zhi-wei, et al. A market-oriented hier- archical scheduling strategy in cloud workflow systems [ J ]. ,Journal of Supercomput, 2013, 63( 1 ): 256-293.

共引文献28

同被引文献40

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部