摘要
在动网格与滑移网格技术结合的基础上引入空化模型构造的数值计算模型,以该模型对考虑空泡因素影响的高速旋转导管螺旋桨进行直线运动时的水动力特性进行数值模拟,观察螺旋桨在线运动工作条件下空泡的发生发展过程,研究了空泡因素对直线运动中导管螺旋桨周围流场以及推力特性的影响,分析了在空泡环境下不同转速、线速度对导管螺旋桨推力特性的影响.结果表明:对于高速旋转的螺旋桨,计入空化模型进行的数值计算可以比较客观的模拟桨叶产生空泡的发生与发展过程,以及由此而引起的螺旋桨水动力特性的变化;计入空化模型后,数值模拟与实验结果之间的最大相对误差要小于不计入空化模型时的数值模拟结果,进速或螺旋桨的转速越高,两者之间的差异越明显;空泡因素对螺旋桨叶水动力特性的影响不仅仅限于吸力面,对压力面同样有不可忽略的影响.
The numerical model based on dynamic and sliding mesh technique combined with cavitation model is applied to simulate the hydrodynamic behavior of a ducted propeller running at high rotating velocity in a linear motion on the effects of cavitation,the growth and development of cavitation of the propeller in a linear motion are observed,the cavity effects on surrounding flow fields and propeller thrust when the propeller is in a linear motion are investigated,and the influences of different rotating velocities and linear velocities on thrust characteristics of the ducted propeller in cavitation environment are analyzed.Results indicate that(1)the growth and development of cavitation on the propeller blade and the hydrodynamic behavior variations caused by the cavitation can be simulated objectively with the numerical approach combined with cavitation model when the propeller is at high rotating velo-city;(2)the maximum relative error between numerical and experimental results with cavity effects is smaller than that without cavity effect,the higher the advanced velocity or the rotating velocity is,the more significant the diffe-rence exists between them;(3)the effects of cavitation on the hydrodynamic characteristics are not only confined to suction surface,but also on high pressure blade surface.
作者
吴家鸣
张恩伟
钟乐
WU Jiaming;ZHANG Enwei;ZHONG Le(School of Civil and Transportation Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China)
出处
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2018年第1期41-49,共9页
Journal of South China University of Technology(Natural Science Edition)
基金
国家自然科学基金资助项目(11372112)~~
关键词
导管螺旋桨
动网格
滑移网格
空泡
水动力特性
ducted propeller
dynamic mesh
sliding mesh
cavitation
hydrodynamics