期刊文献+

基于移动视觉搜索技术的智慧公共文化服务模型研究 被引量:18

Smart Cultural Service Model Based on Mobile Visual Search
下载PDF
导出
摘要 移动视觉搜索应用于公共文化服务符合国家"互联网+"的发展战略。通过对移动视觉搜索应用于智慧公共文化服务的需求动机可以发现:公共文化服务领域已有丰富的视觉资源;不同机构视觉资源急需互联;大数据环境激发高层语义表达需求;移动互联网改变人们搜索习惯。随后从视觉资源获取方式、视觉资源组织方式、移动视觉搜索实现方式和应用与服务方式四个方面进行案例分析,构建了一个基于移动视觉搜索技术的智慧公共文化服务模型。文章最后从视觉资源获取、视觉资源组织、移动视觉搜索和应用服务四个层面探讨移动视觉搜索如何应用于公共文化服务。 Under the mobile Internet environment,the application of mobile visual search technology in the field of public cultural services responses to the national strategy of cultural"Internet+",bringing the opportunity of developing smart public cultural services.This paper analyzes the motivation of applying mobile visual search in smart public cultural services.It is concluded that public cultural service fields possess massive visual resources and they urgently need to be linked.Moreover,the demand for high-level semantic of visual resources is generated and people prefer mobile search nowadays.Therefore,this paper proposes a smart public cultural service model based on mobile visual search technology,by analyzing empirical cases.It discusses the important modules from four levels of visual resource acquisition,visual resource organization,mobile visual search and service application.
作者 董晶 吴丹
出处 《图书与情报》 CSSCI 北大核心 2018年第2期16-23,共8页 Library & Information
基金 武汉大学人文社会科学青年学者学术发展计划学术团队项目"人机交互与协作创新团队"(项目编号:Whu2016020) 教育部人文社会科学研究规划基金项目"面向移动互联网的图书馆用户行为大数据分析与服务创新研究"(项目编号:16YJA870009)与教育部人文社会科学重点研究基地重大项目"大数据资源的制度规制和国家治理研究"(项目编号:17JJD870001)研究成果之一
关键词 移动视觉搜素 智慧公共文化服务 公共文化服务模型 关联数据 情境感知 mobile visual search smart public cultural services public cultural service model linked data context awareness
  • 相关文献

参考文献14

二级参考文献179

  • 1Bruns E,Brombach B,Zeidler T,et al.Enabling mobilephones to support large-scale museum guidance[J].IEEEMultimedia,2007,14(2):16 25
  • 2Nister D,Stewenius H.Scalable recognition with avocabulary tree[C]??Proceedings of IEEE Computer SocietyConference on Computer Vision and Pattern Recognition.Washington D C:IEEE Computer Society Press,2006,2:2161 2168
  • 3Lowe D G.Distinctive image features from scale-invariantkeypoints[J].International Journal of Computer Vision,2004,60(2):91 110
  • 4Fischler M A,Bolles R C.Random sample consensus:aparadigm for model fitting with applications to image analysisand automated cartography[J].Communications of theACM,1981,24(6):381 395
  • 5Bay H,Ess A,Tuytelaars T,et al.Speeded-up robustfeatures(SURF)[J].Computer Vision and ImageUnderstanding,2008,110(3):346 359
  • 6Li F F,Perona P.A Bayesian hierarchical model for learningnatural scene categories[C]??Proceedings of IEEE ComputerSociety Conference on Computer Vision and PatternRecognition.Washington D C:IEEE Computer SocietyPress,2005:524 531
  • 7Vapnik V N.The nature of statistical learning theory[M].2nd ed.New York:Springer,2000
  • 8Burges J C.A tutorial on support vector machines for patternrecognition[J].Data Mining and Knowledge Discovery,1998,2(2):121 167
  • 9Hsu C W,Liu C J.A comparison of methods for multiclasssupport vector machines[J].IEEE Transactions on NeuralNetworks,2002,13(2):415 425
  • 10www.google.com/mobile/goggles/

共引文献164

同被引文献283

引证文献18

二级引证文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部