摘要
随着西北地区城镇化建设的发展,黄土高填方成为一个重要的研究课题。针对黄土高填方项目做了大量室内标准击实试验,对理论问题、影响因素、数值解法进行了研究。研究表明:(1)依据能量守恒原理,通过计算发现我国各行业土工规程中给出的单位体积击实功标准值较延安地区黄土略微偏小;(2)引入含气量概念,发现Q_3黄土击实样比Q_2黄土击实样含气量高;(3)引入可达到的压实系数概念,通过构造可达到的压实系数与饱和度的关系曲线,发现在特定的干密度条件下,选择最优含水率左侧的含水率数值更为适宜;(4)可以结合几个主要影响构造含水率的最优区间,将含水率控制在最优区间而不是最佳含水率数值,即可以减少水的使用,也能保证施工质量要求。
With the development of urbanization in northwest region,the high loess-filled project has become an important research topic.In this paper,indoor standard compaction tests are carried out to research theoretical problems,influencing factors,and numerical solutions.The results show that:(1)According to the energy conservation theory,it finds that the calculated unit volume compaction standard values given by different industry geotechnical testing rules are a little smaller than loess in Yan'an region.(2)By introducing the concept of air content,this paper finds that the compacted Q3 loess sample is higher in air content than the compacted Q2 loess sample.(3)By defining the concept of obtainable compaction coefficient and structuring relation curve of obtainable compaction coefficient and saturation level curve,this paper finds out that in specific conditions of the dry density,select the value of the left side of optimum water content is more appropriate.(4)Combining with several main factors can structure the optimal range of water content,and controlling water content in the optimal range rather than the optimum water content value,the use of water can be reduced and the construction quality requirement can be also ensured.
作者
张伦超
郝明月
ZHANG Lun-chao;HAO Ming-yue(Department of Civil Engineering,Chuzhou Vocational and Technical College,Chuzhou,Anhui 239000,China;College of Civil and Transportation Engineering,Hohai University,Nanjing 210098,China;Rizhao Port Group Co.,Ltd.,Rizhao,Shandong 276800,China)
出处
《西昌学院学报(自然科学版)》
2018年第2期21-26,50,共7页
Journal of Xichang University(Natural Science Edition)
基金
安徽省教育厅2017年高校自然科学研究项目重点项目资助(KJ2017A725)
关键词
击实试验
黄土高填方
含气量
理论分析
可达到的压实系数
最优区间
standard compaction test
high loess-filled project
air content
theoretical analysis
obtainable compaction coefficient
optimum range