期刊文献+

超奇异椭圆曲线标量乘算法改进

Improvement of Scalar Multiplication Algorithm for Hyper-Singular Elliptic Curve
下载PDF
导出
摘要 由于量子计算的快速发展,许多已建立的公共密钥加密算法(RSA、Diffe-Hellman、ECC、DSA等)将无法提供足够的安全性。超奇异椭圆曲线密码体制与椭圆曲线密码体制相比,安全性高、密钥长度相似,并且已经在hash函数领域中取得成功。标量乘计算是密码体制中最为核心和重要的计算,在此基础上,研究特征为2的域上超奇异椭圆曲线快速标量乘改进方案。实验结果表明,在特征为2域上,快速标量乘改进算法的运行速度与安全性均大大提高。 Due to the rapid development of quantum computing,many established public key encryption algorithms(RSA,Diffe-Hellman,ECC,DSA,etc.)will not provide sufficient security.Compared with elliptic curve cryptosystems,hyper-singular elliptic curve cryptosystems have higher security and similar key lengths,and have been successful in the hash function domain.The scalar multiplication calculation is the most important calculation in the cryptosystem.On this basis,studies the fast scalar multiplication improvement scheme for hyper-singular elliptic curves over the domain.The experimental results show that the speed and security of the fast scalar multiplication improved algorithm are greatly improved in the feature of 2 domains.
作者 徐雪莲 XU Xue-lian(College of Information Engineering,Shanghai Maritime University,Shanghai 201306)
出处 《现代计算机(中旬刊)》 2018年第7期50-54,59,共6页 Modern Computer
关键词 超奇异椭圆曲线 椭圆曲线 Frobenius映射 标量乘算法 Super-singular Elliptic Curve Elliptic Curve Frobenius Mapping Scalar Multiplication Algorithm
  • 相关文献

参考文献5

二级参考文献42

  • 1侯整风,李岚.椭圆曲线密码系统(ECC)整体算法设计及优化研究[J].电子学报,2004,32(11):1904-1906. 被引量:30
  • 2汪翔,鲍皖苏,吕诗飞.点乘运算中整数表示方法研究[J].微计算机信息,2006,22(03X):240-242. 被引量:5
  • 3刘双根,李萍,胡予濮.椭圆曲线密码中标量乘算法的改进方案[J].计算机工程,2006,32(17):28-29. 被引量:7
  • 4KOBLITZ N. Elliptic curve cryptosystems[J]. Mathematics of Computation, 1987, 48(177): 203-209.
  • 5MILLER V S. Uses of elliptic curves in cryptography[C]// CRYPTO'85: Proceedings of Advances in Cryptology. Springer Berlin: Heidelberg Press, 1986, 218: 417-428.
  • 6DIMITROV V S, JULLIEN G A. Loading the bases: a new number representation with applications[J]. IEEE Circuits and Systems Magazine, 2003, 3(2): 6-23.
  • 7DIMITROV V S, IMBERT L, MISHRA P K. Fast elliptic curve point multiplication using double-base chains [DB/OL]. [2007-04-10]. http://eprint.iacr.org/2005/069.
  • 8AVANZI R, DIMITROV V S, DOCILE C et al. Extending scalar multiplication using double bases[C]//ASIA CRYPT'06: Proceedings of Advances in Cryptolo gy-ASIACRYPT 2006. Springer Berlin: Heidelberg Press, 2006, 4284: 130-144.
  • 9MISHRA P K, DIMITROV V S. Efficient quintuple formulas for elliptic curves and efficient scalar multiplication using multibase number representation [DB/OL]. [2007-04-10]. http://eprint.iacr.org/2007/040.
  • 10EISENTRAGER K, LAUTER K, MONTGOMERY P L. Fast elliptic curve arithmetic and improved Weil pairing evaluation[C]//CT-RSA 2003: Proceedings of Topics in Cryptology. Springer Berlin: Heidelberg Press, 2003, 2612: 343-354.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部