期刊文献+

基于CFA和BP神经网络的入侵检测方法 被引量:3

Intrusion Detection Method Based on Cuttlefish Algorithm and BP Neural Network
下载PDF
导出
摘要 基于BP神经网络的入侵检测方法因神经网络的初始网络运行参数是随机选择,存在容易陷入局部最优及收敛慢而导致检测准确率低的问题,提出一种基于CFA和BP神经网络的入侵检测方法 CFA-BPIDS.将BP神经网络的权值和阈值编码成CFA中的细胞个体,BP神经网络全局误差作为CFA的适应值,然后进行多次迭代,选择适应值最优的细胞个体作为BP神经网络的权值和阈值,最后将具有最优权值和阈值的BP神经网络应用在网络入侵检测中的检测模块.实验结果表明,该方法相比基于遗传算法和粒子群算法,优化BP神经网络的入侵检测方法提高了入侵检测准确率. In the intrusion detection method based on BP neural network,because the initial network running parameters of neural network were random selection,it was easy to get into local optimal,slow convergence,and low detection accuracy.A method called CFA-BPIDS was proposed.It was based on CFA optimizing the BP neural network.The weight and threshold of BP neural network were encoded into the cell individuals in CFA.The deviation of BP neural network was used as the fitness value of CFA.Then the individual cell with the best fitness value was chosen as the initial weight and threshold of the BP neural network after iterations.Finally,the BP neural network model of CFA optimization was applied to intrusion detection.The simulation results showed that,compared with the BP neural network model which was optimized by genetic algorithm and particle swarm optimization,the proposed method improved detection accuracy.
作者 凌捷 黄盛 LING Jie;HUANG Sheng(School of Computer,Guangdong University of Technology,Guangzhou 510006,China)
出处 《郑州大学学报(理学版)》 CAS 北大核心 2018年第3期1-6,共6页 Journal of Zhengzhou University:Natural Science Edition
基金 广东省科技项目(2014B090901053 2015B010128014 2015B090906015 2016B010107002) 广州市科技计划项目(201604010077 201604010048)
关键词 CFA BP神经网络 入侵检测 遗传算法 粒子群算法 cuttlefish algorithm BP neural network intrusion detection genetic algorithm particle swarm optimization
  • 相关文献

参考文献5

二级参考文献55

  • 1孔锐,张冰.一种快速支持向量机增量学习算法[J].控制与决策,2005,20(10):1129-1132. 被引量:31
  • 2叶明江,崔勇,徐恪,吴建平.基于有状态Bloom filter引擎的高速分组检测[J].软件学报,2007,18(1):117-126. 被引量:13
  • 3D E Denning. An Intrusion Detection Model [ J ]. IEEE Transac- tion on Software Engineering, 2010,13 (2) :222 - 232.
  • 4C L Hang, C J Wang. A GA - based feature selection and parame- ters optimization for support vector machines [ J ]. Expert Systems with Applications, August 2009,31 (2) : 231 -240.
  • 5J Hong, et al. A novel intrusion detection system based on hierar- chical clustering and support vector machines [ J ]. Expert Systems with Applications, 2011 ( 38 ) :306 - 313.
  • 6L Khan, M Awad, B Thuraisingham. A new intrusion detection system using support vector machines and hierarchical clustering [J]. The VLDB Journal, 2007,(16) : 507 -521.
  • 7X S Wang. A new metaheuristic bat- inspired algorithm [ C ]. Nature Inspired Cooperative Strategies for Optimization, Studies in Computational Intelligence, Springer - Verlag, Berlin Eidelberg, 2010 - 10:65 -74.
  • 8X S Yang. Bat Algorithm for Multi -objective Optimization[ J]. Int. J. Bio - Inspired Computation, 2011,3 (5) : 267 - 274.
  • 9X S Yang, A H Gandomi. Bat Algorithm: A Novel Approach for Global Engineering Optimization [ J ]. Engineering Computation, 2012,29 (5) :267 - 289.
  • 10ZHANG Y, YANG A, XIONG C, et al. Feature selection using data envelopment analysis[J]. Knowledge-Based Systems, 2014, 64:70-80.

共引文献137

同被引文献39

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部