期刊文献+

基于去随机化方法的Markov跳变系统有限频段控制 被引量:2

Derandomization based finite-frequency control for Markov jump system
下载PDF
导出
摘要 针对Markov跳变系统,本文利用去随机化方法将随机跳变系统转化为包含转移速率信息的确定系统,并讨论系统在给定时间内的控制问题,将特定频段干扰信号的频率信息引入控制器设计,以确保系统满足有限频段性能指标;同时从时间的角度设计给定时间控制器,使系统状态轨迹在工艺要求的时间内受限运动.所提方案不仅从频率、时间的尺度对系统频域特性及暂态性能进行综合分析,还充分考虑模态跳变对整体系统性能的影响,为降低现有设计方法的保守性提供了新的思路.最后仿真示例验证了所提方法的有效性及优越性. This paper converts the stochastic Markov jump system into a deterministic system by the derandomization method and discusses the control issue within the given time interval.Not only the finite-frequency domain performance is satisfied by introducing the frequency information of external disturbances with specific band into the controller design,but also the state trajectories are guaranteed to stay within the desired bound in the required time via designing a given-time controller.The proposed scheme investigates the frequency domain and transient performances of the system from both frequency and time aspects.What is more,the effect of mode jumping on the performance of the whole system is analyzed,which provides a new way to reduce the conservativeness of the existing design methods.Finally,simulation example verifies the effectiveness and superiority of the proposed technique.
作者 万海英 栾小丽 刘飞 WAN Hai-ying;LUAN Xiao-li;LIU Fei(Key Laboratory for Advanced Process Control of Light Industry of Ministry of Education,Institute of Automation,Jiangnan University,Wuxi Jiangsu 214122,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2018年第7期1002-1008,共7页 Control Theory & Applications
基金 国家自然科学基金项目(61473137 61722306)资助~~
关键词 去随机化 MARKOV跳变系统 有限频段 给定时间控制器 干扰抑制 derandomization Markov jump system finite-frequency given-time controller disturbance rejection
  • 相关文献

参考文献7

二级参考文献93

  • 1孙敏慧,邹云,徐胜元.马尔可夫切换系统的鲁棒H_∞控制[J].控制与决策,2005,20(12):1370-1373. 被引量:10
  • 2李世华,丁世宏,田玉平.一类二阶非线性系统的有限时间状态反馈镇定方法[J].自动化学报,2007,33(1):101-104. 被引量:52
  • 3Dorato P. Short time stability in linear time-varying systems[C]. Proc of the IRE Int Convention Record. Part 4. New York, 1961: 83-87.
  • 4Amato F, Ariola M, Abdallah C T, et al. Dynamic output feedback finite-time control of LIT systems subject to parameteric uncertainties and disturbances [C]. Proc of the European Control Conf. Berlin: Springer, 1999: 1176-1180.
  • 5Amato F, Ariola M, Dorato P. Finite-time control of linear systems subject to parametric uncertainties and disturbanees[J]. Automatica, 2001, 37(9): 1459-1463.
  • 6Amoto F, Ariola M, Cosentino C. Finite-time stabilization via dynamic output feedback [J]. Automatica, 2006, 42(2): 337-342.
  • 7Weiss L, Infante E F. Finite time stability under pertuabing forces and on product spaces [J]. IEEE Trans on Automatic Control, 1967, 2(2): 54-59.
  • 8Amato F, Ariola M. Finite-time control of discrete-time linear systems[J]. IEEE Trans on Automatic Control,2005, 50(5): 724-729.
  • 9Krasovskii N M, Lidskii E A. Analytical design of controllers in systems with random attributes [J]. Automation and Remote Control, 1961, 22 (1-3): 1021- 1025, 1141-1146, 1289-1294.
  • 10Mao X. Stability of stochastic differential equations with Markovian switching[J]. Stochastic Processes and Their Applications, 1999, 79(2): 45-67.

共引文献30

同被引文献5

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部