期刊文献+

强混合样本情形含附加信息时总体分位数的经验似然置信区间

Empirical Likelihood Confidence Intervals for Quantiles in the Presence of Auxiliary Information under Strong Mixing Samples
下载PDF
导出
摘要 强混合随机变量序列的应用较为广泛,如许多线性过程为强混合的,且一些连续时间扩散模型和随机波动模型为强混合的.在金融风险管理领域分位数又称VaR,它表示给定置信水平下金融资产产生的损失的上限.本文在强混合样本和含附加信息情形构造了总体分位数的对数经验似然比统计量,并证明了对数经验似然比统计量的渐近分布为卡方分布,由此构造了总体分位数的经验似然置信区间.在此基础上考虑了一类检验问题,证明了在同一检验水平下,含附加信息时检验的渐近功效高于不含附加信息时检验的渐近功效,并且含附加信息时检验的渐近功效随信息量的增加而非降. Strong mixing random variable sequences are used widely in practice.For example,linear processes are strongly mixing under certain conditions.In addition,some continuous time diffusion models and stochastic volatility models are strongly mixing as well.In financial risk management,population quantiles are also called VaR(Value-at-Risk)which specifies the level of excessive losses at a given confidence level.In this paper,in the presence of auxiliary information and under strong mixing samples,the log-empirical likelihood ratio statistics for quantiles are proposed and it is shown that these statistics asymptotically have the distribution ofχ2.Based on this result,the empirical likelihood based confidence intervals for quantiles are constructed.A class of testing problems are also investigated.It is shown that the asymptotic power of the testing rule in the presence of auxiliary information is higher than that without auxiliary information,and the power is not decreased as more information is available.
作者 黎玲 李华英 罗敏 秦永松 LI Ling;LI Hua-ying;LUO Min;QIN Yong-song(Department of Mechanical and Electrical Engineering,Wuzhou Vocational College,Wuzhou 543002;College of Mathematics and Statistics,Guangxi Normal University,Guilin 541004;Department of Mathematics,Guilin Staff and Workers University,Guilin 541002)
出处 《工程数学学报》 CSCD 北大核心 2018年第4期385-407,共23页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(11671102) 广西自然科学基金(2016GXNSFAA3800163) 广西高校数学与统计模型重点实验室基金~~
关键词 强混合样本 附加信息 分位数 分组经验似然 渐近功效 strong mixing sample auxiliary information quantile blockwise empirical likelihood asymptotic power
  • 相关文献

参考文献4

二级参考文献11

  • 1林正炎.相依样本情形时密度的核估计[J].科学通报,1983,28(12):709-713.
  • 2Lin Z Y,The Limit Theory for Mixing Dependent Random Variables,1997年
  • 3许冰,Strong law for mixing sequence,1995年
  • 4Shao Q M,Ann Probab,1995年,23卷,948页
  • 5LEI Qing-zhu,QIN Yong-song.Empirical likelihood confidence interval for a conditional probability density under mdependent sample[J].Journal of Guangxi Normal University:Natural Science Edition,2006,24 (2):32-35.
  • 6CHEN Song-xi,HALL P.Smoothed empirical likelihood confidence intervals for quantiles[J].Ann Statist,1993,21(3):1166-1181.
  • 7SAMUR J D.Convergence of sums of mixing triangular arrays of random vectors with stationary rows[J].Ann Probability,1984,12 (2):390-426.
  • 8OWEN A.Empirical likelihood ratio confidence regions[J].Ann Statist,1990,18(1):90-120.
  • 9刘京军,陈平炎,甘师信.φ-混合序列的大数定律[J].数学杂志,1998,18(1):91-95. 被引量:21
  • 10王敬芳.可持续发展视角下我国农业生态与农业经济的协调发展路径探索[J].农业开发与装备,2020(1):26-27. 被引量:14

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部