期刊文献+

基于支持向量机优化的人体动作识别方法 被引量:4

Human action recognition method based on support vector machine optimization
下载PDF
导出
摘要 为了能够有效改善人体动作识别过程中传统支持向量机使用一对一识别策略,并且实现识别结果的输出,对大部分动作种类进行忽略,从而降低识别效率及识别进度的问题,就提出了基于支持向量机优化的人体动作识别。基于向量机优化的人体动作识别使用支持向量机改进策略实现动作识别,在识别过程中利用分类器识别精度实现传统策略的完善,并且在识别结果输出的过程中输出相对应的置信度,通过置信度处理识别结果。最后对其进行实现,通过实验结果表示,基于支持向量优化的识别率为98.7%,表示此方法具有有效性,能够提高人体动作识别的精准度及效率。 In order to identify a strategy using traditional support can effectively improve the human action recognition in the process of vector machine,output and achieve recognition results,most of the action types are ignored,thus reducing the efficiency of identification and recognition of the progress of the problem,it is proposed to support the optimization of human action recognition based on svm.Human action recognition vector machine optimization using improved support vector machine strategy implementation action recognition based on improving the traditional strategy using the classifier recognition accuracy in the identification process,and in the process of recognition results output in the corresponding output confidence,through confidence recognition results.Finally,it is implemented.The experimental results show that the recognition rate based on support vector optimization is 98.7%,indicating that this method is effective,and it can improve the accuracy and efficiency of human action recognition.
作者 王晋 WANG Jin(Xi’an Technological University,Xi’an 710021,China)
机构地区 西安工业大学
出处 《电子设计工程》 2018年第17期6-9,16,共5页 Electronic Design Engineering
基金 陕西省社科基金项目(2016Q022)
关键词 支持向量 优化 动作识别 运动模型 support vector optimization human action recognition motion model
  • 相关文献

参考文献14

二级参考文献109

  • 1刘懿,王敏.基于时空域3D-SIFT算子的动作识别[J].华中科技大学学报(自然科学版),2011,39(S2):134-136. 被引量:3
  • 2李志春.道岔动作电流曲线的分析[J].铁道通信信号,2005,41(11):20-21. 被引量:13
  • 3白雪冰,王克奇,王辉.基于灰度共生矩阵的木材纹理分类方法的研究[J].哈尔滨工业大学学报,2005,37(12):1667-1670. 被引量:88
  • 4周珂,彭宏,胡劲松.支持向量机在心电图分类诊断中的应用[J].微计算机信息,2006,22(03X):237-239. 被引量:5
  • 5陈锻生,陈齐松,刘政凯.基于类灰度图的类Haar特征构建及其应用[J].郑州大学学报(理学版),2007,39(1):33-39. 被引量:4
  • 6Leuthardt E C, Schalk G, Wolpaw J R, et al. A Brain--computer Interface Using Electrocortico- graphic Signals in Humans[J]. Journal of Neural Engineering, 2004,1 (2) : 63-71.
  • 7Li Yong, Gao Xiaorong, Liu H, et al. Classification of Single--trial Electroencephalogram During Finger Movement[J]. IEEE Transactions on Bio--medical Engineering, 2004,51(6) : 1019-1025.
  • 8Zhou H, Hu H, Harris N D, et al. Applications of Wearable Inertial Sensors in Estimation of Upper I.imb Movements[J]. Journal of Biomedical Signal Processing and Control, 2006,1 ( 1 ) : 22-32.
  • 9Sazonov E S, Bumpus T, Zeigler S, et al. Classification of Plantar Pressure and Heel Acceleration Patterns Using Neural Networks[C]//Proceedings of 2005 IEEE International Joint Conference on Neural Networks. Montreal, Canada, 2005 : 3007-3010.
  • 10Kuzelicki J, Zefran M, Burger H, et al. Synthesis of Standing--up Trajectories Using Dynamic Optimization[J]. Gait & Posture,2005,21(1) :1-11.

共引文献94

同被引文献49

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部