期刊文献+

博物馆监控视频中慢速移动稀疏目标异常轨迹检测 被引量:2

Slow Moving Sparse Target Anomaly Detection in Museum Monitoring Video
下载PDF
导出
摘要 传统异常轨迹检测方法将轨迹序列看作轨迹特征,无法有效描述轨迹,导致异常轨迹检测结果不可靠。为此,提出一种新的博物馆监控视频中慢速移动稀疏目标轨迹检测方法。采用一种快速计算方法对和目标相似度较高的粒子进行筛选,滤除和均值相差较大的粒子。对跟踪目标进行稀疏表示,为了避免目标被干扰或遮挡,进行非负性约束优化,完成稀疏求解,获取博物馆监控视频中慢速移动稀疏目标跟踪结果。依据跟踪结果将可代表整体轨迹的特征向量与部分可代表局部轨迹的特征向量合成一个整体特征向量,利用整体特征向量对慢速移动稀疏目标轨迹进行描述,通过描述结果和K聚类方法实现目标异常轨迹检测。实验结果表明,所提方法检测的异常轨迹与其他轨迹之间的差异最大,检测结果可靠,实际应用性较高。 The traditional anomaly trajectory detection method takes the trajectory sequence as the trajectory feature,and can not effectively describe the trajectory,which leads to the unreliable result of abnormal trajectory detection.To this end,a new slow moving sparse target trajectory detection method in museum monitoring video is proposed.A fast calculation method is used to filter the particles with higher similarity to the target and filter out the particles with larger difference in the mean value.Sparse target tracking,in order to avoid interference or occlusion of target and non-negative constrained optimization,complete sparse solution,slow moving target tracking results to obtain sparse feature vectors in video surveillance museum;synthesis of a whole feature vector and part of the basis for tracking results will represent the overall trajectory can represent the local path and describe the slow moving target trajectory using whole sparse feature vector,to achieve the goal of trajectory anomaly detection by describing the results and K clustering method.The experimental results show that the difference between the anomaly trajectory and the other trajectories detected by the proposed method is the greatest,and the detection results are reliable and the practical application is high.
作者 刘速 孙晨 LIU Su;SUN Chen(Henan Museum,Zhengzhou 450002,China;Huaqing College,Xi an University of Architecture and Technology,Xi an 710000,China)
出处 《科学技术与工程》 北大核心 2018年第22期84-89,共6页 Science Technology and Engineering
关键词 博物馆 监控视频 慢速移动 稀疏目标 异常轨迹 检测 museum surveillance video slow motion sparse target abnormal trajectory detection
  • 相关文献

参考文献14

二级参考文献150

  • 1代科学,张军,李国辉,来旭.监控视频运动目标的频繁轨迹模式挖掘[J].国防科技大学学报,2006,28(6):108-113. 被引量:5
  • 2杨俊,王润生.智能化交通视频图像处理技术研究[J].电视技术,2006,30(9):74-77. 被引量:14
  • 3邵平,杨路明.基于模板分解和积分图像的快速Kirsch边缘检测[J].自动化学报,2007,33(8):795-800. 被引量:17
  • 4LOU J,LIU Q,TAN T,et al. Semantic interpretation of object activities in a surveillance system [ C ]//Prec. 16th International Conference on Pattern Recognition. [ S. l. ] :IEEE Press ,2002,3:777-780.
  • 5LIU Huaping,SUN Fuchun, HE Kezhong. Symmetry-aided particle filter for vehicle tracking[ C ]//Proc. 2007 IEEE International Conference on Robotics and Automation. Roma: IEEE Press ,2007:4633-4638.
  • 6Hu W,Xiao X,Fu Z,et al.A system for learning statistical mo- tion pattems[J].IEEE Transactions on Pattern Analysis and Ma- chine Intelligence,2006,28(9). 1450-1464.
  • 7Bashir F I,Khokhar A, Schonfeld D.Real-time motion trajectory- based indexing and retrieval of video sequences[J].IEEE Trans- actions on Multimedia, 2007,9 ( 1 ) : 58-65.
  • 8Bashir F I, Khokhar A, Schonfeld D.Object trajectory-based activity classification and recognition using hidden Markov models[J]. IEEE Transactions on Image Processing,2007,16(7) : 1912-1919.
  • 9Yang J, Hu M.Tmjpattem:mining sequential patterns fi'om imprecise trajectories of mobile objects[C]//Proceedings of the Intemational Conferences on Extending Database Technology, 2006: 664-681.
  • 10Morzy M.Mining frequent trajectories of moving objects for lo-cation prediction[C]//Proceedings of the International Confer- ence on Machine Learning and Data Mining,2007:667-680.

共引文献78

同被引文献18

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部