期刊文献+

区域配电网实时状态估计器及其性能分析 被引量:4

Real-time state estimator of regional distribution power grid and its performance analysis
下载PDF
导出
摘要 设计了一种基于贝叶斯理论的区域配电网状态估计器,以解决随机性分布式电源接入区域配电网和测量装置数量有限给配电网状态估计带来的困难。首先依据前推回代潮流计算方法建立了配电网电压估计模型,应用贝叶斯理论设计了状态估计器,理论分析了改变监测装置位置和利用不同监测装置信息估计节点电压的影响。通过在IEEE 33节点配电系统仿真验证了文中所提出方法的正确性和有效性。进一步仿真分析了节点注入功率波动方差和测量装置位置对估计精度的影响,给出了监测装置的位置优化结果。文中为高渗透率分布式电源接入的区域配电网状态估计提供了理论和实用方法。 This paper designs a regional distribution network state estimator based on Bayesian theory to solve the difficulties in the distribution network state estimation caused by the randomness in the output of the distributed generations accessing to the regional distribution network and the limit of the number of measuring devices.Firstly,the voltage estimation model of distributed network is established based on the back/forward sweep power flow calculation method,then,the state estimator based on the Bayesian theory is designed,and the impacts of changing the positions and using the information of different measuring devices on the voltage estimation accuracy are theoretically analyzed.The correctness and effectiveness of the proposed method is verified by the simulation results on the IEEE 33 nodes system.The influences of the variance of the node injection power and the positions of the measuring devices on the estimation accuracy are analyzed in further simulations,and the optimal positioning of the measuring devices is also provided.This paper provides a theoretical and practical method for the state estimation of regional distribution network with high permeability of distributed generations accessed.
作者 庞凯元 乐健 李星锐 Pang Kaiyuan;Le Jian;Li Xingrui(School of Electrical Engineering,Wuhan University,Wuhan 430072,China)
出处 《电测与仪表》 北大核心 2018年第16期1-5,共5页 Electrical Measurement & Instrumentation
关键词 状态估计 分布式电源 区域配电网 贝叶斯估计 state estimation,distributed generation,regional distribution network,Bayesian estimation
  • 相关文献

参考文献6

二级参考文献116

共引文献604

同被引文献48

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部