期刊文献+

基于改进多层感知机的手写数字识别 被引量:11

Handwritten Digit Recognition based on Modified Multilayer Perceptron
下载PDF
导出
摘要 针对传统多层感知机(Multi-Layer Perceptron,MLP)模型在手写数字识别方面识别精度不高、识别效率较低的问题,提出改进的多层感知机模型,引入Dropout解决过拟合问题,Adagrad优化参数调试过程,ReLU解决梯度弥散问题,并在TensorFlow软件平台上实现该改进模型。实验表明,该改进的MLP模型能够有效地进行特征学习,在提高识别性能上表现优秀。与传统MLP算法模型相比,识别准确率提高了将近7.0%,识别效率提高了27.3s。 Aiming at the problem that the traditional MLP(Multi-Layer Perceptron)model has low recognition accuracy and low recognition efficiency in handwritten digit recognition,a modified multilayer perceptron model is proposed.And Dropout is introduced to solve the over-fitting problem,and by using Adagrad to optimize the parameter debugging process and ReLU to solve the gradient dispersion problem,the modified model is implemented on the TensorFlow software platform.Experiments show that the modified MLP model could effectively perform feature learning and perform better in improving recognition performance.Compared with the traditional MLP algorithm model,the recognition accuracy is greatly improved nearly by 7.0%higher;and the recognition efficiency improved by 27.3s.
作者 何平 刘紫燕 HE Ping;LIU Zi-yan(College of Big Data and Information Engineering,Guizhou University,Guiyang Guizhou 550025,China)
出处 《通信技术》 2018年第9期2075-2080,共6页 Communications Technology
基金 贵州省科学技术基金项目(黔科合基础[2016]1054) 贵州省联合资金项目(黔科合LH字[2017]7226号) 贵州大学2017年度学术新苗培养及创新探索专项(黔科合平台人才[2017]5788)~~
关键词 多层感知机 手写数字识别 DROPOUT Adagrad ReLU multi-layer perceptron handwritten digit recognition Dropout Adagrad ReLU
  • 相关文献

参考文献3

二级参考文献27

  • 1芮挺,沈春林,丁健,张金林.基于主分量分析的手写数字字符识别[J].小型微型计算机系统,2005,26(2):289-292. 被引量:22
  • 2洪留荣,王耀才.应用图论和基元方向信息的手写数字识别[J].计算机工程,2006,32(3):34-36. 被引量:8
  • 3华顺刚,王丽丹,欧宗瑛.基于多幅不同曝光量照片的场景高动态范围图像合成[J].大连理工大学学报,2007,47(5):678-682. 被引量:15
  • 4CHAURASIYA R K. High dynamic range imaging for dy-namic scenes[ C]. Proceedings of 4th International Con-ference on Communication Systems and Network Technol-ogies ,2014 :828-832.
  • 5ZHANG W, CHAM W K. Gradient-directed multi-expo-sure composition [ J ]. IEEE Transactions on Image Pro-cessing, 2012, 21(4) : 2318-2323.
  • 6KUMAR B K S. Image fusion based on pixel significanceusing cross bilateral filter [ J]. Signal, Image and VideoProcessing, 2013,9:1-12.
  • 7DEBEVEC P E,MALIK J. Recovering high dynamicrange radiance maps from photographs [ C ]. In: Pro-ceedings of SIGGRAPH ’ 97 ACM Transactions onGraphics, 1997; 369-378.
  • 8MITSUNAGA T,NAYAR S K. Radiometric self-calibra-tion [ C]. IEEE Computer Society Conference on Comput-er Vision and Pattern Recognition, 1999,1(6):374-380.
  • 9MANN S. Comparametric equations with practical appli-cations in quantigraphic image processing [ J ]. IEEETransactions on Image Processing,2000,9(8):1389-1406.
  • 10LI ZH G, ZHENG J H. Visual-salience-based tone map-ping for high dynamic range images [ J ]. IEEE Transac-tions on Industrial Electronics, 2014, 61 ( 12 ):7076-7082.

共引文献54

同被引文献89

引证文献11

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部