期刊文献+

基于卷积神经网络的鲁棒高精度目标跟踪算法 被引量:21

A Robust and Accurate Object Tracking Algorithm Based on Convolutional Neural Network
下载PDF
导出
摘要 目标跟踪是计算机视觉中重要的研究领域之一.为了跟踪复杂场景中外观变化剧烈的目标,本文提出了一种基于卷积神经网络的目标跟踪算法.算法中的网络模型结构包括预训练的特征提取层和自适应更新的分类器层.在开始跟踪前,首先训练全连接层和分类器层的参数,以及目标的特征与位置之间的线性关系.其次,定义了评估跟踪结果可信度的标准.如果得到的跟踪结果的可信度较高,则根据跟踪结果的特征调整位置,提高跟踪结果的精确度.最后,在训练网络时,每次迭代都选择分类器得分的最高的负样本参与训练.该策略可以提高模型的分辨能力.在OTB50测试集中的实验结果表明,我们的算法取得了良好的跟踪结果. Object tracking is one of the most important area of computer vision.In order to trac k the object whose appearance changes dramatically in complex scene,we propose a tracking algorithm based on the convolutional neural network.The network of o ur tracker has two parts:the feature extraction layer and the adaptive classifi er layer.At the beginning,we train a fully-connected layer,a softmax layer an d the linear relationship between feature and position of these samples.Next,w e define a reliability of the tracking result.If the result is reliable,we wil l adjust the result location according to its features.Finally,in the network training process,we select the negative samples with max classifying scores in each iteration.The strategy could improve distinguishability of our tracker.Ex periments on OTB50 show that our tracker could achieve state-of-the-art perfo rmance.
作者 李康 李亚敏 胡学敏 邵芳 LI Kang;LI Ya-min;HU Xue-min;SHAO Fang(School of Computer Science and Information Engineering,Hubei University,Wuhan,Hubei 430062,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2018年第9期2087-2093,共7页 Acta Electronica Sinica
基金 湖北省自然科学基金(No.2017CFB305)
关键词 目标跟踪 神经网络 计算机视觉 机器学习 object tracking neural network computer vision machine learning
  • 相关文献

参考文献5

二级参考文献49

  • 1Yilmaz A, Javed O, Shah M. Object tracking: a survey. ACM Comput Surv, 2006, 38:1-45.
  • 2Yang H, Shao L, Zheng F, et al. Recent advances and trends in visual tracking: a review. Neurocomputing, 2011, 74: 3823-3831.
  • 3DaneUjan M, Khan F S, Felsberg M, et al. Adaptive color attributes for real-time visual tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 2014. 1090-1097.
  • 4Lee D Y, Sim J Y, Kim C S. Visual tracking using pertinent patch selection and masking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 2014. 3486-3493.
  • 5Zhang T, Jia K, Xu C, et al. Partial occlusion handling for visual tracking via robust part matching. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 2014. 1258-1265.
  • 6Isard M, MacCormick J. BraMBLe: a Bayesian multiple-blob tracker. In: Proceedings of IEEE International Confer- ence on Computer Vision, Vancouver, 2001, 2:34-41.
  • 7Nummiaro K, Koller-Meier E, van Gool L. A color-based particle filter. In: Proceedings of the 1st International Workshop on Generative-Model-Based Vision, Kopenhagen, 2002, 1:53-60.
  • 8Babenko B, Yang M H, Belongie S. Visual tracking with online multiple instance learning. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Miami, 2009. 983-990.
  • 9Zhang K, Zhang L, Yang M H. Real-time compressive tracking. In: Proceedings of European Conference on Computer Vision, Firenze, 2012. 864-877.
  • 10Hare S, Saffari A, Tort P H S. Struck: structured output tracking with kernels. In: Proceedings of IEEE International Conference on Computer Vision, Barcelona, 2011. 263-270.

共引文献28

同被引文献99

引证文献21

二级引证文献132

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部