期刊文献+

基于多先验谱模型的低慢小目标子空间检测器

Adaptive Detector of Subspace Dignals for Low-atitude Slow and Small Targets Based on Multiple A-priori Spectral Models
下载PDF
导出
摘要 针对非均匀杂波环境下自适应检测低慢小目标时,信号特征难提取,有效训练样本受限的问题,将低慢小目标建模为多维子空间模型,提出了基于多先验谱模型的低慢小目标子空间检测器构造方法。该检测器使用纹理分量为逆伽马分布的复合高斯模型来描述杂波,利用多先验谱模型的线性组合来表示杂波协方差矩阵的逆,能在均匀和非均匀杂波背景下检测低慢小目标。仿真表明,该检测器比传统基于渐进最大似然估计协方差矩阵的检测器以及单独基于多先验谱和子空间的检测器性能更好,并且训练样本数不足的情况下保持很好的性能。 When adaptively detecting the Low-atitude Slow and Small(LSS)targets in inhomogeneous clutter with limited number of training samples,the extract of radar signal feature is difficult.Aiming at this problem,a detector is proposed by combining multiple a-priori spectral models with multidimension taget subspace models.This paper models the heavy-tailed clutter as compound-Gaussian process with inverse gamma distributed texture and assumes that multiplea-priori spectral models can be obtained and the inverse of the clutter covariance matrix is the linearcombination of them.Then the Generalized Likelihood Ratio Test(GLRT)approach is used to propose three adaptive detectors.Simulations show that the proposed detector has better performance than the others,especially under the condition of limited number of training data.
作者 吕宽 张玉 唐波 LYU Kuan;ZHANG Yu;TANG Bo(School of Electronic Countermeasure,National University of Defense Technology,Hefei 230037,China)
出处 《火力与指挥控制》 CSCD 北大核心 2018年第9期182-185,共4页 Fire Control & Command Control
关键词 低慢小目标 目标子空间 复合高斯模型 多先验谱模型 LSS targets taget subspace compound-gaussian clutter multiple a-priori spectral models
  • 相关文献

参考文献2

二级参考文献26

  • 1方勇昌,张汉华,陈英豪,陈曾平.一种低分辨雷达飞机目标识别方法[J].宇航计测技术,2004,24(5):31-34. 被引量:2
  • 2孙剑峰,李琦,陆威,王骐.Image recognition of laser radar using linear SVM correlation filter[J].Chinese Optics Letters,2007,5(9):549-551. 被引量:4
  • 3Y Wu,J Tang,Y Peng.On the essence of knowledge aided clutter covariance estimate and its convergence[J].IEEE Transactions on Aerospace and Electronic Systems,2011,47(1):569-585.
  • 4J O Berger.Statistical Decision Theory and Bayesian Analysis[M].Second Edition.New York:Springer,1985.118-286.
  • 5F Gini,M Rangaswamy.Knowledge-Based Radar Detection,Tracking,and Classification[M].New York:John Wiley & Sons Inc,2008.103-128.
  • 6J C Moya,A D Maio.Experimental performance analysis of distributed targets coherent radar detector [J].IEEE Transactions on Aerospace and Electronic Systems,2012,48(3):2216-2238.
  • 7K J Sangston,F Gini,M S Greco.Coherent radar target detection in heavy-tailed compound Gaussian clutter[J].IEEE Transactions on Aerospace and Electronic Systems,2012,48(1):64-77.
  • 8J Carretero-Moya,J G Menoyo,A A Lopze.Small target detection in high resolution heterogeneous sea clutter:An empirical analysis[J].IEEE Transactions on Aerospace and Electronic Systems,2011,47(3):1880-1888.
  • 9E Ollila,D E Tyler,V Koivunen,et al.Compound Gaussian clutter modeling with an inverse Gaussian texture distribution[J].IEEE Signal Processing Letters,2012,19(12):876-879.
  • 10He You,Jian Tao,Su Feng,et al.Novel range-spread target detectors in non-Gaussian clutter[J].IEEE Transactions on Aerospace and Electronic Systems,2010,46(3):1312-1328.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部