期刊文献+

基于无线传感的动态智能交通诱导控制系统 被引量:3

Dynamic Intelligent Traffic Guidance Control System Based on Wireless Sensor
下载PDF
导出
摘要 为提高车辆的出行效率,缓解交通拥堵现象,设计了基于无线传感的动态智能交通诱导控制系统.利用车载自动感应装置和无线传感网络对车辆的行驶信息进行实时监控、定点收集并及时处理,同时依靠交通信号控制系统调节交通信号的状态;将交通诱导任务模型转换为带权的AOE网,以AOE网为基础拆分模型化后的诱导任务,附加交通状况的实时性约束,最终求解诱导问题的最优路径集合,从而实现对车流量的智能诱导.通过具体的实例验证,对获得的优化前后的交通信息数据进行对比,结果表明:该系统提高了交通运行效率,降低了车辆平均运行时间和缩短了平均出行距离,实现了交通数据流信息的最大化利用. To improve vehicle travel efficiency and alleviate traffic congestion,a dynamic intelligent traffic guidance control system is designed.By using vehicle-mounted auto-induction device and wireless sensor network,the traveling information of vehicle is real-time monitored,collected and processed.Meanwhile,by the traffic control system,the status of traffic signal is adjusted.And the traffic guidance task model is transferred to weighted AOE network,based on that,the model guidance task is split,attached with real-time traffic situation constraint;the optimal path set of guidance problem could be resolved to realize the intelligent guidance to traffic.From the comparison of traffic data before and after optimization.The experimental results show that by using the proposed system,the travel efficiency is improved,the average running time and distance of vehicle are reduced,and the traffic flow information is maximum utilized.
作者 李晓英 LI Xiaoying(College of Tourism,Xinyang Normal University,Xinyang 464000,China)
出处 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2018年第4期666-670,共5页 Journal of Xinyang Normal University(Natural Science Edition)
基金 国家自然科学基金项目(61402393)
关键词 无线传感 AOE网 诱导控制 实时性 wireless sensor AOE(Activity on Edge)network induced control real-time
  • 相关文献

参考文献2

二级参考文献22

  • 1朱庆保.动态复杂环境下的机器人路径规划蚂蚁预测算法[J].计算机学报,2005,28(11):1898-1906. 被引量:50
  • 2KOENIG S, LIKHACHEV M, FURCY D. Lifelong planning A [J]. Artificial Intelligence, 2004, 155(1/2): 93-146.
  • 3YANG J, ZHANG M. A two-level path planning method for on-road autonomous driving[C]//2th International Conference on Intelligent System Design and Engineering Application, Sanya, China: 2012 : 661- 664.
  • 4STEWART S B,WHITE C C. Multiobjective A* [J]. Journal of the ACM, 1991, 38(4): 775-814.
  • 5OLIVEIRA RIOS L H, CHAIMOWICZ L. A survey and classification of A* based best-first heuristic search algorithms [C]//Advanees in Artificial Intelligence-SBIA. Sao Bernardo do Campo, Brazil: 2010:253-262.
  • 6MANDOW L, PEREZ J L DE AL CRUZ. A new approach to multi-objective A* search[C]//Proceedings of the 19th International Joint Conference on Artificial Intelligence. San Francisco, USA: 2005:218- 223.
  • 7DASGUPTA P, CHAKRABARTI P P, DESAKAR S C. Multiobjective heuristic search[M]. Morgan Kaufman,1999.
  • 8XU Y Y,YUE W Y. A generalized framework for BDD-based replanning A* search [C]// Artifical Intelligences, Networking and Parallel/Distributed Computing. 10th ACIN International Conference on Software Engineering. Daegu South Korea, 2009: 133-139.
  • 9HARIKUMAR S, KUMAR S. Iterative deepening multiobjective A* [J]. Information Proeessing Letters, 1996, 58(1) : 11-15.
  • 10REFANIDIS, VLAHAVAS I. Multiobjective heuristic statespace planning[J]. Artificial Intelligence, 2003, 145 (1/2):1 -32.

共引文献17

同被引文献15

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部