期刊文献+

基于AdaBoost置信图的红外与可见光目标跟踪 被引量:1

Infrared-Visible Target Tracking Based on AdaBoost Confidence Map
下载PDF
导出
摘要 针对于复杂场景下,跟踪的目标容易产生漂移甚至跟踪失败的情况,本文提出了一种基于AdaBoost置信图的红外与可见光目标跟踪算法。首先,以颜色和纹理特征为描述子对红外与可见光图像的目标样本与背景样本进行表征和AdaBoost分类,并基于分类度计算得到红外与可见光图像的置信图;然后,在置信图中分别计算它们的目标候选者与其模板置信图之间的相似度,并将两相似度进行加权融合,构建联合目标函数;最后,对目标函数进行泰勒展开和求导等操作,推导出联合位移公式,并运用均值漂移算法完成目标搜索。对多组红外与可见光图像序列对测试结果表明,本文提出的算法在处理光照变化、目标交汇、目标遮挡等方面都表现良好。 To address the problem that the tracker is easy to drift away from the target and even failure in complex scenes,this paper presents an infrared-visible target tracking algorithm based on AdaBoost confidence map.Firstly,the target samples and background samples in infrared-visible images are characterized by using color and texture descriptor and are classified using AdaBoost classifier,and then the confidence maps of infrared and visible images are calculated based on the classification scores.Secondly,the similarity between confidence maps of target candidate and its template is calculated for visible and infrared images,and the visible similarity and infrared similarity are integrated into a joint objective function by weighting.Finally,a joint target location-shift formula is induced by performing multi-variable Taylor series expansion and maximization on the objective function,and the optimal target location is gained recursively by applying the mean shift procedure.The experimental result in infrared-visible image sequences demonstrates that the proposed method performs well in dealing with illumination change,target intersection,target occlusion and so on.
作者 张灿龙 苏建才 李志欣 王智文 ZHANG Canlong;SU Jiancai;LI Zhixin;WANG Zhiwen(Guangxi Key Lab of Multi-source Information Mining&Security,Guangxi Normal University,Guilin Guangxi 541004,China;Guangxi Collaborative Innovation Center of Multi-source Information Integration and Intelligent Processing,Guilin Guangxi 541004,China;College of Computer Science and Communication Engineering,Guangxi University of Science and Technology,Liuzhou Guangxi 545006,China)
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2018年第4期42-50,共9页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金(61866004 61663004 61462008 61751213) 广西自然科学基金(2017GXNSFAA198365 2016GXNSFAA380146) 柳州市科学研究与技术开发工程项目(2016C050205)
关键词 级联分类器 置信图 红外与可见光目标 均值漂移 融合跟踪 AdaBoost classifier confidence map infrared-visible target fusion tracking
  • 相关文献

参考文献5

二级参考文献35

  • 1PengNingsong,YangJie,LiuErqi.Model update mechanism for mean-shift tracking[J].Journal of Systems Engineering and Electronics,2005,16(1):52-57. 被引量:3
  • 2刘从义,敬忠良,肖刚,杨波.Feature-based fusion of infrared and visible dynamic images using target detection[J].Chinese Optics Letters,2007,5(5):274-277. 被引量:5
  • 3Shi Jianbo, Tomasi C. Good Features to Track//Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Seattle, USA, 1994:593 -600.
  • 4Han Bohyung, Davis L. Object Tracking by Adaptive Feature Extraction// Proc of the International Conference on Image Processing. Singapore, Singapore, 2004,III: 1501-1504.
  • 5Stem H, Efros B. Adaptive Color Space Switching for Face Tracking in Multi-Colored Lighting Environments//Proc of the 5th IEEE International Conference on Automatic Face and Gesture Recognition. Washington, USA, 2002 : 249 - 254.
  • 6Avidan S. Subset Selection for Efficient SVM Tracking// Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Madison, USA, 2003, I : 85 -92.
  • 7Comaniciu D, Ramesh V, Meer P. Real-Time Tracking of Non-Rigid Objects Using Mean Shift // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, USA, 2000, II : 142-149.
  • 8Comaniciu D, Ramesh V, Meer P. Kernel-Based Object Tracking. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25 (5):564 -577.
  • 9Jia Jingping, Zhao Rongchun. Tracking of Objects in Image Sequences Using Bandwidth Matrix Mean Shift Algorithm // Proc of the 7th International Conference on Signal Processing. Beijing, China, 2004, III: 918-921.
  • 10Liu T L, Chen H T. Real-Time Tracking Using Trust-Region Methods. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(3) : 397 -402.

共引文献30

同被引文献7

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部