期刊文献+

基于DSKSVD字典学习的语音信号欠定盲源分离算法 被引量:2

Underdetermined Blind Source Separation Algorithm for Speech Signal Based on DSKSVD Dictionary Learning
下载PDF
导出
摘要 为解决传统算法训练的字典规模受限且运算量大的缺点,提出一种基于字典学习的语音信号欠定盲源分离算法,通过双重稀疏字典训练方法训练可稀疏表示的冗余字典并对观测信号进行稀疏分解。分析欠定盲源分离和压缩感知(CS)问题的等价性,构建基于CS的欠定盲源分离模型,并应用正交匹配追踪算法对信号进行重构,实现语音信号欠定盲源分离。实验结果表明,与KSVD算法和在线字典学习算法相比,该算法在保证分离精度几乎不变的前提下,能降低字典构建的计算复杂度,提高信号稀疏表示的有效性,并减少重构算法的运行时间。 In order to overcome the shortcoming that the traditional learning algorithm training has limited dictionary size and large amount of computation,the algorithm of underdetermined blind source separation for speech signal based on the dictionary learning is studied.Firstly,a redundant dictionary is trained by adopting double sparse dictionary training algorithm to carry out the sparse decomposition of the observed signal.Then it analyzes the equivalence property of underdetermined blind source separation and Compressed Sensing(CS)equivalence problems,builds a model of underdetermined blind source separation based on CS,and also applies the Orthogonal Matching Pursuit(OMP)algorithm to reconstruct the signal to achieve speech signal underdetermined blind source separation.In the premise of guaranteeing the separation accuracy,the algorithm reduces the computational complexity of dictionary construction,improves the validity of signal sparse representation and reduces the running time of reconstruction algorithm.Experimental results show that the algorithm is better than the KSVD algorithm and online dictionary learning algorithm,which greatly improves the computational efficiency.
作者 李虎 徐岩 LI Hu;XU Yan(School of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处 《计算机工程》 CAS CSCD 北大核心 2018年第10期252-257,共6页 Computer Engineering
基金 国家自然科学基金(61461024)
关键词 欠定盲源分离 压缩感知 稀疏表示 冗余字典 正交匹配追踪算法 underdetermined blind source separation Compressed Sensing(CS) sparse representation redundant dictionary Orthogonal Matching Pursuit(OMP)algorithm
  • 相关文献

参考文献3

二级参考文献13

  • 1M.S.Lewieki and T.l.Sejnowski. Learning overcomplete representations [J]networks, Neural Comput. ,2000: 337-365.
  • 2P. Bofill nd M. Zibulevsky. Underdeter mined blind source separation using S parse representations [J],Signal Proees s. ,2001,81(11):2353-2362.
  • 3M.Zibulevsky and B.A.Pearlmutter. Blind source separation by Sparse Decomposition in a Signal Dictionary[J], NeuralComPut., 2001,13(4) : 863- 882.
  • 4Bofill P, Zibulevsky M. Underdetermined blind source separation using sparse representations [ J ]. Signal Pro- cessing, 2001,81( 11 ) : 2353 -2362.
  • 5Li Y Q, Amari S I, Cichocki A. Underdetermined blind source separation based on sparse representation [ J ]. IEEE Transactions on Signal Processing, 2006, 54 (2) : 423 - 437.
  • 6Xu T, Wang W W. A compressed sensing approach for underdetermined blind audio source separation with sparse representation[ C ]//IEEE/SP 15th Workshop on Statistical Signal Processing. Cardiff, UK, 2009 : 493 - 496.
  • 7Lee T W, Lewicki M S, Girolami M, et al. Blind source separation of more sources than mixtures using overcomplete representations[ J ]. IEEE Signal Process- ing Letters, 1999, 6(4) : 87 -90.
  • 8Donoho D L. Compressed sensing [J]. IEEE Transac- tions on Information Theory, 2006, 52 (4): 1289 -1306.
  • 9Blumensath T, Davies M E. Compressed sensing and source separation [ C ]//The 7th International Confer- ence on Independent Component Analysis and Signal Separation. London, UK, 2007:341-348.
  • 10Aharon M, Elad M, Bruckstein A M, et al. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation [ J ]. IEEE Transactions on Signal Processing, 2006, 54 ( 11 ) : 4311 - 4322.

共引文献21

同被引文献9

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部