期刊文献+

基于等几何边界元法的声学敏感度分析 被引量:1

Acoustic shape sensitivity analysis using isogeometric BEM
下载PDF
导出
摘要 基于非均匀有理B样条(NURBS)曲面建模技术,边界物理量同样用NURBS基函数插值,推导出三维声场等几何边界积分方程。进一步以控制点为设计变量,用直接微分法推导出等几何敏感度边界积分方程,给出声场声压对形状参量的敏感度。针对边界积分方程中的超奇异积分,使用奇异相消技术并结合Cauchy主值积分和Hadamard有限部分积分处理,给出了超奇异积分的NURBS插值半解析表达式。数值算例验证了本文算法求解声学结构形状敏感度的有效性,为声学结构的整体形状优化打下基础。 An isogeometric boundary element method in three dimensional acoustics and a related sensitivity analysis are presented.The structure geometry is built by NURBS surface.In sensitivity analysis,the control points are selected as design variables,and the direct differentiation method is used.The boundary integral equations and their sensitivity boundary integral equations are formulated under isogeometric discretization.An isogeometric version of the subtracting and adding back technique is adopted to eliminate singularities,in which the Cauchy principal value and the Hadamard finite part integral methods are also used.Numerical examples are presented to demonstrate the efficiency and validity of the proposed algorithm.
作者 刘程 赵文畅 陈磊磊 陈海波 LIU Cheng;ZHAO Wen-chang;CHEN Lei-lei;CHEN Hai-bo(CAS Key Laboratory of Mechanical Behavior and Design of Materials,Department of Modern Mechanics, University of Science and Technology of China,Hefei 230027,China;School of Civil Engineering,Xinyang Normal University,Xinyang 464000,China)
出处 《计算力学学报》 EI CAS CSCD 北大核心 2018年第5期603-610,共8页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(11772322) 中国科学院战略性先导科技专项B类(XDB22040502)资助项目
关键词 等几何分析 NURBS 边界元法 敏感度分析 直接微分法 isogeometric analysis NURBS boundary element method sensitivity analysis direct differentiation method
  • 相关文献

参考文献3

二级参考文献17

  • 1Greengard L,Rokhlin V.A fast algorithm for particle simulations[J].Journal of Computational Physics,1987,73 (2):325-348.
  • 2Nishimura N.Fast multipole accelerated boundary integral equation methods[J].ASME Applied Mechanics Reviews,2002,55 (4):299-324.
  • 3Liu Y J.Fast Multipole Boundary Element Method[M].Cambridge University Press,2009.
  • 4Zheng C J,Chen H B,Matsumoto T,et al.Three dimensional acoustic shape sensitivity analysis by means of adjoint variable method and fast multipole boundary element approach[J].Computer Modeling in Engineering & Sciences,2011,79 (1):1-29.
  • 5Zheng C J,Matsumoto T,Takahashi T,et al.A wideband fast multipole boundary element method for three dimensional acoustic shape sensitivity analysis based on direct differentiation method[J].Enginee-ring Analysis with Boundary Elements,2012,36 (3):361-371.
  • 6Bebendorf M,Rjasanow S.Adaptive low-rank approximation of collocation matrices[J].Computing,2003,70 (1):1-24.
  • 7Kim NH,Dong J.Shape sensitivity analysis of se-quential structural-acoustic problems using FEM and BEM[J]. Journal of Sound and Vibration,2006,290 (1-2):192-208.
  • 8Burton A J,Miller G F.The application of integral equation methods to the numerical solution of some exterior boundary-value problems[J].Proceedings of the Royal Society of London-A,1971,323 (1553):201-210.
  • 9Amini S,Harris P J.A comparison between various boundary integral formulations of the exterior acoustic problems[J].Computer Methods in Applied Mechanics and Engineering,1990,84 (1):59-75.
  • 10Matsumoto T,Zheng C J,Harada S,et al.Explicit evaluation of hypersingular boundary integral equation for 3-D Helmholtz equation discretized with constant triangular element[J].Journal of Computational Science and Technology,2010,4 (3):194-206.

共引文献14

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部