期刊文献+

基于七维状态向量反向无迹卡尔曼滤波的弹道外推算法 被引量:7

Extrapolation Algorithm Based on the Seven-state Inverse Unscented Kalman Filter
下载PDF
导出
摘要 针对弹道模型误差、参数估计误差以及外推距离过长导致定位精度低的问题,建立了基于七维状态向量的反向无迹卡尔曼滤波外推算法。为精确建立状态模型,该算法将弹道系数作为状态参量,纳入滤波过程。采用无迹卡尔曼滤波算法,以提高非线性估计精度。此外,由于正向滤波外推距离长,模型误差积累大,该算法采用反向滤波处理,将雷达测得的首点作为滤波终点,通过4阶龙格-库塔方程外推炮位。仿真结果表明,该算法定位精度相较原算法提高约50%. An“inverse”unscented Kalman filter(UKF)algorithm with seven-dimensional state vector is proposed to solve the problems of low target positioning accuracy and poor fire direction ability of firefin-der radar.A state model is established by taking the ballistic coefficient as the state parameter and incorporating it into the filtering process.The UKF algorithm is used to improve the nonlinear estimation accuracy.The model error accumulates due to the long extrapolated distance of forward filtering.In the proposed algorithm,an inverse filtering is used,the first point measured by radar is used as the end point of the filter,and the artillery position is extrapolated using the fourth-order Runge-Kutta equation.The simulation results show that the proposed algorithm can effectively improve the extrapolation accuracy of artillery locating and fire correction radar.
作者 谢恺 秦鹏程 XIE Kai;QIN Peng-cheng(Army Academy of Artillery and Air Defense,Hefei 230031,Anhui,China)
出处 《兵工学报》 EI CAS CSCD 北大核心 2018年第10期1945-1950,共6页 Acta Armamentarii
基金 武器装备"十三五"预先研究重点项目(3011020211)
关键词 无迹卡尔曼滤波 弹道系数 反向滤波 龙格-库塔方程 unscented Kalman filter ballistic coefficient inverse filtering Runge-Kutta equation
  • 相关文献

参考文献3

二级参考文献32

  • 1姚俊,王欣.多管火箭弹弹道参数卡尔曼滤波估计方法[J].弹箭与制导学报,2005,25(1):44-46. 被引量:1
  • 2陶卿,刘欣,唐升平,丁永清.基于支持向量机的弹道识别及其在雷达弹道外推中的应用[J].兵工学报,2005,26(3):308-311. 被引量:11
  • 3王文灿,聂锋.最小二乘法重建主动段弹道及其精度分析[J].弹道学报,2007,19(1):24-26. 被引量:8
  • 4[1]Brai L Morgan.Exploratory model analysis of the space based infrared system(SBIRS)low global scheduler problem[J],ADA309027,Dec.1999
  • 5[2]Raytheon STSS Block 06 Sensor Payload.www.raytheonmis-siledefense.com,2003 Raytheon Company
  • 6[3]Yeddanapudi M,Bar-Shalom Y,et al.Ballistic missile track initiation from satellite observations[J].IEEE Trans AES,1995,31(3):1054-1071
  • 7[5]Daum F E.Nonlinear filters:beyond the kalman filter[J].IEEE AES Systems Magazine,2005,20(8):57-69
  • 8[6]Li X R,Jilkov V P.A survey of maneuvering target tracking-approximation techniques for nonlinear filtering[C]//Prec.Of the SPIE,2004,5428:537-550
  • 9[7]Sanjeev M,et al.A tutorial on particle filters for online nonlinear nongaussian bayesian trscking[J].IEEE Trans SP,2002,50(2):174-188
  • 10[8]Julier S J,Uhlmann J K.Unscented filtering and nonlinear estimation[J].Proc.IEEE,2004,92(3):401-422

共引文献42

同被引文献46

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部