期刊文献+

碳纳米管抗菌性能、机制及应用研究进展 被引量:5

Antibacterial properties,mechanism and applications of carbon nanotubes
下载PDF
导出
摘要 对碳纳米管抗菌性能、机制及应用领域进行较为全面的综述,分别对单壁碳纳米管和多壁碳纳米管抗菌活性及影响因素进行了阐述,结果表明单壁碳纳米管抑菌性能较好。多壁碳纳米管需要进行相应的改性能够达到良好的抑菌效果。碳纳米管对细菌的作用机理主要是细胞膜损伤、氧化应激反应和细胞粘附等作用方式。最后也简单的介绍了碳纳米管在水体净化、医用材料及食品抗菌材料的应用。由于碳纳米管的毒性和成本问题,使其应用面临着巨大的挑战。 In this paper,the antimicrobial properties,mechanism and application of carbon nanotubes(CNTs)are reviewed.The antimicrobial activity and influencing factors of single-walled carbon nanotubes and multi-walled carbon nanotubes are described.Single-walled carbon nanotubes exhibit high antibacterial performance.Multi-walled carbon nanotubes need to be modified to achieve good antibacterial effect.The action mechanism of carbon nanotubes on bacteria is mainly cell membrane damage,oxidative stress response and cell adhesion and other modes of action.Finally,the application of carbon nanotubes in water purification,medical materials and food antimicrobial materials is also briefly introduced.Due to the toxicity and cost concerns,applications of CNTs face enormous challenges.
作者 毛贻琴 丁利君 王浩 刘丹 MAO Yiqin;DING Lijun;WANG Hao;LIU Dan(School of Chemical Engineering and Light Industry,Guangdong University of Technology,Guangzhou 510006,China)
出处 《功能材料》 EI CAS CSCD 北大核心 2018年第10期39-42,共4页 Journal of Functional Materials
基金 国家自然科学青年基金资助项目(21706037)
关键词 碳纳米管 抗菌 机理 应用 carbon nanotubes antimicrobial activity mechanism application
  • 相关文献

参考文献5

二级参考文献304

  • 1刘芬,徐克花.碳纳米管在生物化学传感及生物传输方面的应用[J].化学分析计量,2009,18(1):83-86. 被引量:3
  • 2朱杰.不同类型磁场对细胞作用的生物学研究[J].生物磁学,2004,4(4):28-30. 被引量:23
  • 3何晓晓,刘芳,王柯敏,葛佳,秦迪岚,龚萍,谭蔚泓.不同功能化基团修饰的硅纳米颗粒与人皮肤角质形成细胞系(HaCaT)的生物效应[J].科学通报,2006,51(10):1156-1162. 被引量:10
  • 4Goodman CM, McCusker CD, Yilmaz T, Rotello VM. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chem, 2004, 15(4): 897-900.
  • 5Zhang ZY, Smith BD. High-generation polycationic dendrimers are unusually effective at disrupting anionic vesicles: membrane bending model. Bioconjugate Chem, 2000, 11(6): 805-814.
  • 6Karoonuthaisiri N, Titiyevskiy K, Thomas JL. Destabilization of fatty acid-containing liposomes by polyamidoamine dendrimers. Coil Surf B: Biointeff, 2003, 27(4): 365-375.
  • 7Hong S, Bielinska AU, Mecke A, Keszler B, Beals JL, Shi X, Balogh L, Orr BG, Baker JR, Banaszak Holl MM. Interaction of poly (amidoamine) dendrimers with supported lipid bilayers and cells: Hole formation and the relation to transport. Bioconjugate Chem, 2004, 15(4): 774-782.
  • 8Lee H, Larson RG. Molecular dynamics simulations of PAMAM dendrimer-induced pore formation in DPPC bilayers with a coarse-grained model. J Phys Chem B, 2006, 110(37): 18204-18211.
  • 9Ginzburg W, Balijepalli S. Modeling the thermodynamics of the interaction of nanoparticles with cell membranes. Nano lett, 2007, 7(12): 3716.
  • 10Wang B, Zhang L, Bae SC, Granick S. Nanoparticle- induced surface reconstruction of phospholipid membranes. Proc Natl Acad Sci USA, 2008, 105(47): 18171.

共引文献25

同被引文献58

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部