期刊文献+

改进Laplace小波字典在轴承故障诊断中的应用 被引量:3

Application of Improved Laplace Wavelet Dictionary in Fault Diagnosis for Bearings
下载PDF
导出
摘要 机械系统中滚动轴承局部故障会导致振动信号中出现冲击响应成分,为有效提取轴承故障冲击特征,基于信号稀疏表示理论,提出了基于改进Laplace字典的轴承故障诊断方法。通过快速Fourier变换及相关滤波法确定基底函数的参数,构造Laplace小波基并通过错位拓展转换为Toeplitz矩阵,以此矩阵作为稀疏表示字典,实现振动信号在Laplace小波基下的稀疏表示,提取信号中瞬态冲击成分特征。对仿真信号及轴承故障信号的验证结果表明:基于改进Laplace字典的稀疏表示方法可有效提取冲击信号特征,实现轴承典型故障诊断。 The local faults of rolling bearings in mechanical system tend to result in impact response component in vibration signals.In order to effectively extract fault impact characteristics of the bearings,based on theory of signal sparse representation,the fault diagnosis method for the bearings is proposed based on improved Laplace dictionary.The parameters of basis function are determined by fast Fourier transform and correlation filtering method.The Laplace wavelet base is built and converted to Toeplitz matrix dislocation expansion.The matrix is taken as sparse representation dictionary to ensure sparse representation of vibration signals under Laplace wavelet base,the transient impact component characteristics in signals are extracted.The verification results of simulation signals and fault signals of the bearings show that the sparse representation method based on improved Laplace dictionary is able to extract characteristics of impact signals effectively and realize typical fault diagnosis of the bearings.
作者 李景乐 谢馨 王华庆 LI Jingle;XIE Xin;WANG Huaqing(School of Mechanical and Electrical Engineering,Beijing University of Chemical Technology,Beijing 100029,China)
出处 《轴承》 北大核心 2018年第11期57-60,共4页 Bearing
基金 国家自然科学基金项目(51675035 51375037)
关键词 滚动轴承 故障诊断 稀疏表示 Laplace小波 相关滤波 rolling bearing fault diagnosis sparse representation Laplace wavelet correlation filtering
  • 相关文献

参考文献4

二级参考文献30

  • 1尹忠科,邵君,Pierre Vandergheynst.利用FFT实现基于MP的信号稀疏分解[J].电子与信息学报,2006,28(4):614-618. 被引量:25
  • 2周明 孙树栋.遗传算法原理及应用[M].西安:西安交通大学出版社,2000..
  • 3杜海平 张亮 史习智.柴油发动机缸盖振动信号时域识别方法研究[J].振动工程学报,2000,13:152-155.
  • 4孟庆丰.基于应用内涵研究故障特征提取技术[J].振动工程学报,2000,13:97-101.
  • 5Mallat S G, Zhang Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993,41(12) :3377--3415.
  • 6Shie Q, Dapang C. Joint time-frequency analysis[ M ]. Englewood Cliffs: Prentice Hall, 1996.
  • 7Huber P J. Project pursuit[J]o The Annals of Statistics, 1985, 13(2) : 435--475.
  • 8MALLAT S, ZHANG Zhifeng. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415.
  • 9ZEPEDA J, GUILLEMOT C, KIJAK E. Image compression using sparse representations and the iteration-tuned and aligned dictionary[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 1061-1073.
  • 10SELESNICK I. Introduction to sparsity in signal processing[EB/OL]. [2013-11-02]. http://eeweb.poly.edu/ iselesni/teaching/lecture_notes/sparsity_intro/sparsity_intr o_slides.pdf.

共引文献84

同被引文献20

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部