期刊文献+

基于科优先策略的植物图像识别 被引量:16

Plant image recoginiton based on family priority strategy
下载PDF
导出
摘要 植物识别领域的研究包括单一背景和自然环境植物图像识别,由于背景噪声的存在,自然环境植物图像识别难度更大。针对如何降低卷积神经网络(CNN)的权重大小、如何改善过拟合、如何提高模型对自然环境植物的识别率和泛化能力的问题,提出科优先(FP)的植物识别方法。与轻量卷积神经网络Mobile Net模型结合,利用迁移学习的方法,建立基于Mobile Net的科优先(FP-MobileNet)植物识别模型。单纯使用Mobile Net模型在单一背景植物数据集flavia上获得了99.8%的识别率;对于更具挑战的自然环境花卉数据集flower102,在训练集样本数量大于测试集时FPMobile Net获得了99.56%识别率,在训练集样本数量小于测试集时FP-MobileNet仍获得了95.56%的识别率。实验结果表明,两种数据集划分方案下FP-MobileNet的识别率均高于单纯的Mobile Net模型;并且FP-MobileNet模型在获得较高识别率的同时,权重仅占13.7 MB,兼顾了精度和延迟,适合推广到需要轻量模型的移动设备。 Plant recognition includes two kinds of tasks:specimen recognition and real-environment recognition.Due to the existence of background noise,real-environment plant image recognition is more difficult.To reduce the weight of Convolutional Neural Networks(CNN),to improve over-fitting,to improve the recognition rate and generalization ability,a method of plant identification with Family Priority(FP)was proposed.Combined with the lightweight CNN MobileNet model,a plant recognition model Family Priority MobileNet(FP-MobileNet)was established by means of migration learning.On the single background plant dataset flavia,the MobileNet model achieved 99.8%of accuracy.For the more challenging real-environment flower dataset flower102,when the number of samples in the training set was greater than that in the test set FP-MobileNet achieved 99.56%of accuracy.When the number of samples in the training set was smaller than that in the test set,FP-MobileNet still obtained 95.56%of accuracy.The experimental results show that the accuracies of FP-MobileNet under two different data set partitioning schemes are both higher than those of the pure MobileNet model.In addition,FP-MobileNet weighs only occupy 13.7 MB with high recognition rate.It takes into account both accuracy and delay,and is suitable for promotion to mobile devices that require a lightweight model.
作者 曹香滢 孙卫民 朱悠翔 钱鑫 李晓宇 业宁 CAO Xiangying;SUN Weimin;ZHU Youxiang;QIAN Xin;LI Xiaoyu;YE Ning(School of Information Technology,Nanjing Forestry University,Nanjing Jiangsu 210037,China;Housing and Real Estate Promotion Center of Jiangsu Provincial Department of Housing and Urban Rural Development,Nanjing Jiangsu 210009,China)
出处 《计算机应用》 CSCD 北大核心 2018年第11期3241-3245,共5页 journal of Computer Applications
基金 国家重点研发计划项目(2016YFD0600101) 国家自然科学基金资助项目(31570662 31500533 61401214) 江苏省大学生创新计划项目(201710298029Z) 江苏省住建厅科技计划项目(2016ZD44) 江苏省优势学科项目~~
关键词 科优先策略 自然环境植物图像 植物图像识别 深度学习 卷积神经网络 Family Priority(FP)strategy real-environment plant image plant image recognition deep learning Convolutional Neural Network(CNN)
  • 相关文献

参考文献2

二级参考文献18

  • 1闸建文,陈永艳.基于外部特征的玉米品种计算机识别系统[J].农业机械学报,2004,35(6):115-118. 被引量:31
  • 2王晓峰,黄德双,杜吉祥,张国军.叶片图像特征提取与识别技术的研究[J].计算机工程与应用,2006,42(3):190-193. 被引量:114
  • 3刘洪臣,陈忠建,冯勇.结合颜色和形态特征的杂草实时识别方法[J].光电工程,2006,33(7):96-100. 被引量:13
  • 4丁娇,梁栋,阎庆.基于D-LLE算法的多特征植物叶片图像识别方法[J/OL].[2013-12-11].http://www.cnki.net/kcms/detail/11.2127.TP.20130924.0943.013.html.
  • 5INGROUILLEM J, LAIRDS M. A quantitative approach to oak variability in some north London woodlands [ J ]. The London Naturalist, 1986, 65: 35-46.
  • 6SIXTAT. Image and video-based recognition of natural objects [ D]. Prague: Czech Technical University, 2011.
  • 7ROSSATTOD R, CASANOVAD, KOLBR M, et al. Fractal analysis of leaf-texture properties as a tool for taxonomic and identification purposes: a case study with species from Neotropical Melastomataceae (Mi-conieae tribe) [ J]. Plant Systematics and Evolution, 2011, 291 ( 1 ) : 103-116.
  • 8MALLAH C,COPE J, ORWELL J. Plant leaf classification using probabilistic integration of shape, texture and margin features [ J/ OL]. [ 2014-01-06 ]. http://www, actapress, com/Abstract, aspx? paperId = 455022.
  • 9PELEGS, NAOR J, HARTLEY R, et al. Multiple resolution texture analysis and classification [ J ]. Pattern Analysis and Machine Intelligence, 1986,6(4) :518-523.
  • 10杨锦忠,郝建平,杜天庆,崔福柱,桑素平.基于种子图像处理的大数目玉米品种形态识别[J].作物学报,2008,34(6):1069-1073. 被引量:54

共引文献75

同被引文献209

引证文献16

二级引证文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部