期刊文献+

基于机器视觉的金属边缘细微缺陷检测方法的研究 被引量:13

Research on detection method for subtle defects of metal edges based on machine vision
下载PDF
导出
摘要 针对金属表面质量人工检测工作量大、效率低等情况,提出一种机器视觉检测金属零件边缘细微缺陷的方法。先根据金属零件表面反光的特点,在亮场下垂直照射,运用形状模板匹配定位,对前景区域膨胀处理,截取包含零件边界信息的图像,缩小处理区域。接着锐化和滤波边缘区域,线性拟合边缘轮廓,提取拟合线段的方向向量,并以此为特征进行区域类划分,提取边缘坐标点。以提取的坐标点为圆心作圆领域,求取每个领域的灰度平均值并线性插值迭代剔除边界干扰点。最后提取符合要求的坐标点排序,重构多直线段,结合背景差分法提取缺陷。实验结果表明,该检测方法能够有效检测出金属边缘细微缺陷。 In view of the heavy workload and low efficiency of the surface quality manual inspection of metal parts,a method of detecting the slight defects of the edge of metal parts by machine vision is proposed.First,according to the characteristics of the surface reflection of metal parts,it use shape template matching to locate the part which is vertically irradiated under the bright field.Then,it expands the foreground area and captures the image containing the part boundary information,and reduce the processing area.After that,it sharpen and filter the edge region,and linearly fit the edge contour.It extracts the direction vector of the fitted segment which is classified by direction vector,and extracts edge coordinates.It uses the extracted coordinate points as the center of a circle area,and calculates the average value of gray in each area and eliminate boundary noise points by linear interpolation iteration.Finally,it extracts coordinate points that meet the requirements,and reconstructs the edge of lines with them,which are sorted,then the defect is extracted by simulating the background difference method.The experimental results show that the detection method can detect the fine edges of metal edges effectively.
作者 刘建春 林海森 黄勇杰 江骏杰 LIU Jianchun;LIN Haisen;HUANG Yongjie;JIAN Junjie(School of Mechanical and Automotive Engineering,Xiamen University of Technology,Xiamen 361024,CHN)
出处 《制造技术与机床》 北大核心 2018年第11期137-140,共4页 Manufacturing Technology & Machine Tool
基金 2018年福建省科技计划项目高校产学合作项目(2018H6025) 厦门市科技计划项目(3502Z20183051)
关键词 边缘细微缺陷 方向向量 圆领域 线性插值迭代 slight defects of the edge direction vector circle area linear interpolation iteration
  • 相关文献

参考文献5

二级参考文献48

  • 1吴家伟,严京旗,方志宏,夏勇.基于Adaboost改进算法的铸坯表面缺陷检测方法[J].钢铁研究学报,2012,24(9):59-62. 被引量:10
  • 2赵娟,彭彦昆,Sagar Dhakal,张雷蕾.基于机器视觉的苹果外观缺陷在线检测[J].农业机械学报,2013,44(S1):260-263. 被引量:43
  • 3刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105. 被引量:357
  • 4陈廉清,高立国,史永杰,李波岚.基于图像识别的微小塑料齿轮检测研究[J].中国机械工程,2007,18(13):1535-1539. 被引量:10
  • 5Carsten Steger, Markus Ulrich, Christian Wiedemann.机器视觉算法与应用[M].杨少荣,吴迪靖,段德山,译,北京:清华大学出版社,2008.
  • 6RafaelC.Ganzales.数字图像处理(第二版)[M].北京:电子工业出版社,2008.
  • 7S. J. AHN, W. RAUH, H. - J. WARNECKE. Least -squares orthogonal distances fitting of circle, sphere, el- lipse, hyperbola, and parabola. Pattern Recognition, 34 (12) :2283 - 2303,2001.
  • 8Tsai D M, Luo Jieyu. Mean shift-based defect detection in multicrystalline solar wafer surfaces [J]. IEEE Transactions on Industrial Informatics, 2011, 7(1):125-135.
  • 9Yeh C H, Wu F C, Ji W L, Huang C Y. A waveletbased approach in detecting visual defects on semiconductor wafer dies [J]. IEEE Transactions on Semiconductor Manufacturing, 2010, 23(2): 284-292.
  • 10Xie Xianghua, Majid M. TEXEMS: texture exemplars for defect detection on random textured surfaces [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(8): 1454-1464.

共引文献89

同被引文献112

引证文献13

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部