期刊文献+

基于LS-SVR的混合定位算法 被引量:1

Hybrid localization algorithm based on LS-SVR
下载PDF
导出
摘要 为解决最小二乘支持向量回归(least-square support vector regression,LS-SVR)定位精度不高的问题,提出基于LS-SVR的混合定位算法,充分考虑未知节点之间的距离信息在定位过程中的有效修正作用。通过LS-SVR算法提供初始值,提高多元Taylor级数展开法的收敛速度;通过多元Taylor级数展开法,充分利用未知节点之间的距离信息,减小测距误差造成的定位误差。仿真结果表明,与传统LS-SVR定位算法相比,混合定位算法的精度更高,减少了正则化参数和核参数的选取对定位精度的影响。 To solve the problem of low positioning accuracy of least-square support vector regression(LS-SVR),a hybrid positioning algorithm based on LS-SVR was proposed,which considered effective correction of the distance information between unknown nodes in the positioning process.The initial values obtained by LS-SVR algorithm can improve the convergence speed of multivariable Taylor series expansion method,and the multivariate Taylor series expansion method can reduce the position error caused by ranging error through making full use of the distance between the unknown node information.Experimental results indicate that the proposed algorithm can improve positioning accuracy and reduce the sel
作者 夏斌 梁春燕 袁文浩 谢楠 XIA Bin;LIANG Chun-yan;YUAN Wen-hao;XIE Nan(College of Computer Science and Technology,Shandong University of Technology,Zibo 255000,China)
出处 《计算机工程与设计》 北大核心 2018年第11期3318-3321,3339,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(61701286 11704229) 山东省自然科学基金项目(ZR2017MF047 ZR2015FL003)
关键词 多元泰勒级数展开 定位模型 最小二乘支持向量回归 定位精度 混合算法 multivariable Taylor series expansion positioning model least-square support vector regression positioning accuracy hybrid algorithm
  • 相关文献

参考文献5

二级参考文献51

  • 1徐凤燕,石鹏,王宗欣.基于参数拟合的距离—损耗模型室内定位算法[J].电路与系统学报,2007,12(1):1-5. 被引量:10
  • 2李建中.无线传感器网络专刊前言[J].软件学报,2007,18(5):1077-1079. 被引量:21
  • 3张令文,谈振辉.基于泰勒级数展开的蜂窝TDOA定位新算法[J].通信学报,2007,28(6):7-11. 被引量:39
  • 4谷红亮,史元春,申瑞民,陈渝.一种用于智能空间的多目标跟踪室内定位系统[J].计算机学报,2007,30(9):1603-1611. 被引量:18
  • 5边肇祺,张学工.2008模式识别[M].2版.北京:清华大学出版社.
  • 6Di M, Joo M. A survey of machine learning in wireless netoworks from networking and application perspectives [C] //Proc of the 6th Int Conf on Information, Communications & Signal Processing. Piscataway, NJ: IEEE, 2007, 1-5.
  • 7Wang W, Huang T L, Liu H, et al. Localization algorithm based on SVM-data fusion in wireless sensor networks [-C] // Proc of the 3rd Int Conf on Genetic and Evolutionary Computing. Piscataway, NJ: IEEE, 2009: 447-450.
  • 8Liu H B, Xiong S W, Chen Q. Localization in wireless sensor network based on multi-class support vector machines [-C] //Proc of the 5th Int Conf on Wireless Communication Networking and Mobile Computing. Piscataway, NJ: IEEE, 2009 : 1-4.
  • 9Kim W, Park J, Kim H. Support vector learning approaches for object localization in acoustic wireless sensor network [C] //Proc of the 5th Int Conf on Intelligent Systems. Piscataway, NJ: IEEE, 2010:485-489.
  • 10邓乃扬,田英杰.SVM——理论、算法与拓展[M].北京:科学出版社,2009.

共引文献31

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部