期刊文献+

基于迭代加权L2/L1范数块稀疏信号重构的ISAR成像算法 被引量:2

ISAR Imaging Algorithm Based on Iterative Weighted L2/L1 Norm Block Sparse Signal Recovery
下载PDF
导出
摘要 为实现快速、高分辨率逆合成孔径雷达(ISAR)成像,利用目标的内在块稀疏结构信息,提出一种迭代加权L2/L1范数块稀疏重构ISAR成像算法。构建ISAR稀疏成像模型,将ISAR成像问题转化为稀疏信号重构问题后,在每次迭代中求解用于下次迭代的权值向量解,从而实现高分辨率ISAR成像。实验结果表明,相比BP、OMP、SBL算法,该算法可以改善成像质量,提高重构效率。 In order to realize fast and high resolution Inverse Synthetic Aperture Radar(ISAR)imaging,an iterative weighted L2/L1 norm block sparse recovery algorithm for ISAR imaging is proposed based on the target’s intrinsic block sparse structure information.After constructing the ISAR sparse imaging model and transforming the ISAR imaging problem into the sparse signal recovery problem,the weighted vector solution for the next iteration is solved in each iteration,and then the high resolution ISAR imaging is realized.Experimental results show that compared with BP,OMP and SBL,the proposed algorithm can improve the image quality and recovery efficiency.
作者 冯俊杰 张弓 FENG Junjie;ZHANG Gong(College of Electronic and Information Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China;School of Electrical Engineering,Liupanshui Normal University,Liupanshui,Guizhou 553004,China)
出处 《计算机工程》 CAS CSCD 北大核心 2018年第11期234-238,共5页 Computer Engineering
基金 国家自然科学基金(61471191) 航空科学基金(20152052026) 贵州省科学技术基金(黔科合LH字[2014]7471号) 贵州省重点学科项目(ZDXK201535)
关键词 逆合成孔径雷达 迭代加权 L2/L1范数 稀疏信号重构 稀疏成像 Inverse Synthetic Aperture Radar(ISAR) iterative weighted L2/L1 norm sparse signal recovery sparse imaging
  • 相关文献

参考文献2

二级参考文献30

  • 1Fishler E, Haimovich A, Blum R, et al.. MIMO radar: an idea whose time has come [C]. Proceedings of the IEEE Radar Conference, Philadelphia, PA, April 2004: 71-78.
  • 2Bekkerman I and Tabrikian J. Target detection and localization using MIMO radars and sonars[J]. IEEE Transactins on Signal Processing, 2006, 54(10): 3873-3883.
  • 3Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 4Baraniuk R and Steeghs P, Compressive radar imaging [C]. IEEE Radar Conference, Boston, MA, 2007: 128-133.
  • 5Li Jun, Xing Meng-dao, and Wu Shun-jun. Application of compressed sensing in sparse aperture imaging of radar [C]. APSAR, Xi'an, China, Oct. 2009: 651-655.
  • 6Chen C Y and Vaidyanathan P P. Compressed Sensing in MIMO radar [C]. IEEE 42nd Asilomar Conference on Signals, System and Computers, Pacific Grove, CA, 2008:41-44.
  • 7Yu Y, Petropulu A P, and Poor H V. MIMO radar using compressive sampling [J]. [EEE Journal of Selected Topics in Signal Processing, 2010, 4(1): 146-163.
  • 8Bellettini A and Pinto M A. Theoretical accuracy of synthetic sperture sonar micronavigation using a displaced phase- center antenna [J]. IEEE Journal of Oceanic Engineering, 2002, 27(4): 780-789.
  • 9Candes E. The restricted isometry property and its implications for compressed sensing [J]. Comptes Rendus Mathematic, 2008, 346(9/10): 589-592.
  • 10Tropp J and Gilbert A C. Signal recovery from random measurements via Orthogonal Matching Pursuit [J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666.

共引文献46

同被引文献4

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部