期刊文献+

商立方体分布式查询研究

Quotient Cube Query in Distributed Computing Environment
下载PDF
导出
摘要 传统数据库处理分析大量历史数据的性能有限,无法达到满意效果。针对该问题,通过对商立方体的研究,提出等价区间的概念,并利用区间之间的独立性,使商立方体能更好地适应分布式环境下的查询。同时,提出了商立方体在Spark集群上的并行查询算法,充分利用等价区间点查询面命中的特性,使在保证查询有效的情况下尽可能并行化。最后,通过实验验证了算法高效性。 Traditional database processing has limited performance in analyzing large amounts of historical data and cannot achieve satisfactory results.Aiming at this problem,through the study of the business cube,we propose the concept of equivalence interval.The independence between the intervals is used to make the quotient cube better adapt to the query in the distributed environment.At the same time,the parallel query algorithm of the business cube on the Spark cluster is proposed,which makes full use of the characteristics of the equivalent interval point query surface hit so as to ensure parallelization as much as possible while ensuring the query is valid.Finally,the efficiency of the algorithm is verified by experiments.
作者 张正凡 都仪敏 ZHANG Zheng-fan;DU Yi-min(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China)
出处 《软件导刊》 2018年第11期37-39,44,共4页 Software Guide
关键词 商立方体 大数据 SPARK MAPREDUCE 等价类 quotient cube big data Spark MapReduce equivalent class
  • 相关文献

参考文献2

二级参考文献14

  • 1Lakshmanan LVS, Pei J, Han JW. Quotient cube: How to summarize the semantics of a data cube. In: Bressan S, Chaudhri AB, Lee ML, Yu JX, Lacroix Z, eds. Proc. of the 23rd Int'l Conf. on Very Large Data Bases. Hong Kong: Morgan Kaufmann, 2002. 778~789.
  • 2Sismanis Y, Deligiannakis A, Roussopoulos N, Kotidis Y. Dwarf: Shrinking the PetaCube. In: Franklin MJ, Moon B, Ailamaki A, eds. Proc. of the 2002 ACM SIGMOD Int'l Conf. on Management of Data. Madison: ACM Press, 2002. 464~475.
  • 3Mumick IS, Quass D, Mumick BS. Maintenance of data cubes and summary tables in a warehouse. In: Peckham J, ed. Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. Tucson: ACM Press, 1997. 100-111.
  • 4Hahn C, Warren S, London J. Edited synoptic cloud reports from ships and land stations over the globe. 1996. http://cdiac.esd.ornl.gov/cdiac/ndps/ndp026b.html
  • 5Gray J, Bosworth A, Layman A, Pirahesh H. Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-totals. In: Su SYW, ed. Proc. of the 12th Int'l Conf. on Data Engineering. New Orleans: IEEE Computer Society, 1996. 152~159.
  • 6Agarwal S, Agrawal R, Deshpande PM, Gupta A, Naughton JF, Ramarkrishman R, Sarawagi S. On the computation of multidimensional aggregates. In: Vijayaraman TM, Buchmann AP, Mohan C, Sarda NL, eds. Proc. of the 22nd Int'l Conf. on Very Large Data Bases. Mumb
  • 7Zhao Y, Deshpande PM, Naughton JF. An array-based algorithm for simultaneous multidimensional. In: Peckham J, ed. Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. Tucson: ACM Press, 1997. 159-170.
  • 8Ross KA, Srivastava D. Fast computation of sparse datacubes. In: Jarke M, Carey MJ, Dittrich KR, Lochovsky FH, Loucopoulos P, Jeusfeld MA, eds. Proc. of the 23rd Int'l Conf. on Very Large Data Bases. Athens: Morgan Kaufmann, 1997. 116~125.
  • 9Harinarayan V, Rajaraman A, Ullman JD. Implementing data cubes efficiently. In: Jagadish HV, Mumick IS, eds. Proc. of the 1996 ACM SIGMOD Int'l Conf. on Management of Data. Montreal: ACM Press, 1996. 205-216.
  • 10Shukla A, Deshpande PM, Naughton JF. Materialized view selection for multidimensional datasets. In: Gupta A, Shmueli O, Widom J, eds. Proc. of the 24th Int'l Conf. on Very Large Data Base. New York: Morgan Kaufmann, 1998. 488~499.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部