期刊文献+

结合Faster RCNN和相似性度量的行人目标检测 被引量:8

Pedestrian Object Detection Based on Faster RCNN and Similarity Measurement
下载PDF
导出
摘要 行人检测是计算机视觉领域的一个研究热点,针对目前算法中常采用非极大值抑制和硬阈值筛选的方法作为后处理,容易造成误检和漏检的问题,提出一种基于相似性度量的行人目标检测方法。首先,采用Faster RCNN生成一系列的目标候选集,应用非极大值抑制对候选集进行初步筛选,然后由较高置信度的目标区域建立特征模板,再根据特征相似性对较低置信度的目标区域做进一步判别,最后将筛选后的目标候选集和模板区域作为检测结果。在VOC、INRIA、Caltech数据集的实验结果证明,基于相似性度量的算法提高了行人检测的准确率。 Pedestrian detection has become a hot topic in the field of computer vision.Non-maximal suppression combined with hard threshold is the most common post-process method in pedestrian detection,whereas it is easy to cause false positive and false negative.As to this problem,this paper presents a pedestrian-object detection method based on similarity measurement.Firstly,Faster RCNN is used to build a series of candidate proposals among which initial selection is made based on non-maximal suppression.Then the authors create feature templates by target areas with high confidence,and make a further selection in the low-confidence proposals according to the feature similarity.Lastly,the detection results are composed of the reserved proposals and the templates.The experimental results from VOC,INRIA,Caltech datasets demonstrate that similarity measurement method can achieve higher pedestrian detection performance.
作者 李宗民 邢敏敏 刘玉杰 李华 LI Zongmin;XING Minmin;LIU Yujie;LI Hua(College of Computer and Communication Engineering,China University of Petroleum,Qingdao Shandong 266580,China;University of Chinese Academy of Sciences,Institute of Computing Technology Chinese Academy of Sciences,Beijing 100190,China)
出处 《图学学报》 CSCD 北大核心 2018年第5期901-908,共8页 Journal of Graphics
基金 国家自然科学基金项目(61379106 61379082 61227802) 山东省自然科学基金项目(ZR2013FM036 ZR2015FM011)
关键词 行人检测 目标候选集筛选 特征相似性度量 模板匹配 pedestrian detection object proposals selecting feature similarity measurement template matching
  • 相关文献

参考文献4

二级参考文献52

  • 1郭烈,王荣本,顾柏园,余天洪.世界智能车辆行人检测技术综述[J].公路交通科技,2005,22(11):133-137. 被引量:18
  • 2贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报,2007,33(1):84-90. 被引量:69
  • 3Viola P, Jones M, Snow D. Detecting pedestrians using patterns of motion and appearance [ A ]. Proceedings of International Conference on Computer Vision[ C]. Washington DC, USA:IEEE, 2003.734 - 741.
  • 4Zhao L, Thorpe C. Stereo and neural network-based pedestrian detecdon[J ]. IEEE Transactions on Intelligent Transportation Systems,2000, 1(3) : 148 - 154.
  • 5Oren M, Papageorgiou C, Sinha P, Osuna E, Poggio T. Pedestrian detection using wavelet templates[ A]. Proceedings of IEEE Conference on Computer Vision and Pattem Recognition[C ]. San Juan,Puerto Rico: IEEE, 1997. 193 - 199.
  • 6Mohan A, Papageorgiou C, Poggio T. Example-based object detection in images by components[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001,23(4) : 349 - 361.
  • 7Xu F L, Liu X, Fujimura K. Pedestrian detection and tracking with night vision [ J ]. IEEE Transactions on Intelligent Transportation Systems, 2005,6( 1 ) :63 - 71.
  • 8Gavfila D M, Giebel J, Munder S. Vision-based pedestrian detection:the PROTECTOR system[A]. Proceedings of IEEE International Conference on Intelligent Vehicles Symposium[C]. Parma,Italy: IEEE, 2004.13 - 18.
  • 9Cheng H, Zheng N N, Qin J J. Pedestrian detection using sparse Gabor filter and support vector machine [A ]. Proceedings of IEEE Intelligent Vehicles Symposium [ C ]. Las Vegas, USA: IEEE, 2005.583 - 587.
  • 10Tian Q M, Sun H,Luo Y P,Hu D C. Nighttime pedestrian detection with a normal camera using SVM classifier [A ]. Proceedings of Intemational Symposium on Neural Networks[C ]. Chongqing, China: Springer, 2005. 3497.189 - 194.

共引文献74

同被引文献56

引证文献8

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部