期刊文献+

基于ResNet的遥感图像飞机目标检测新方法 被引量:12

A new method for target detection of remote sensing image based on ResNet. computer engineering and applications
下载PDF
导出
摘要 针对遥感影像中目标方向、目标大小、拍摄角度及场景的多样性导致飞机目标检测精度不高的问题,提出一种基于残差网络(ResNet)的目标检测新方法。首先采集并且标注遥感图像数据,这些数据包含了晴天、薄雾等多种气候条件下的遥感影像;然后构建图形金字塔和模板金字塔进行多尺度检测,并且加入残差网络的全卷积网络结构中不同层的上下文特征信息;最后通过拟合回归进行端到端的训练,得出鲁棒性强,精度高的目标检测网络模型。实验结果表明,该网络模型对于较复杂背景等干扰有较强的鲁棒性,检测精度高达89.5%。 The target in remote sensing image with different size and directions,also with different shot angles and complex background is difficult to detect.An algorithm based on residual network is proposed to solve these problems.Firstly,collection and annotation of remote sensing image data sets,which include the remote sensing images under a variety of climatic conditions such as sunny days and mist;then,the image pyramid and the template pyramid are constructed for multi-scale detection,and the contextual information of different layers in the full convolutional network structure of the residual network is added;finally,a good performance model trained by a end-to-end training weights with regression method.Experimental results show that the proposed method has high robustness against more complicated background disturbances,and precision is 89.5%.
作者 赵丹新 孙胜利 ZHAO Dan-xin;SUN Sheng-li(Chinese Academy of Sciences,Shanghai Institute of Technical Physics,Shanghai 200083,China;University of Chinese Academy of Sciences,Beijing 100049,China;School of Information Science&Technology,ShanghaiTech University,Shanghai 201210,China;Key Laboratory of Infrared System Detection and Imaging Technology of the Chinese Academy of Sciences,Shanghai 200083,China)
出处 《电子设计工程》 2018年第22期164-168,共5页 Electronic Design Engineering
关键词 目标检测 多尺度特征 深度学习 遥感图像 卷积神经网络 target detection multi-scale features deep learning remote sensing images CNN
  • 相关文献

参考文献2

二级参考文献13

  • 1HAYKINS.神经网络与机器学习[M].3版.申富饶,徐烨,郑俊,译.北京:机械工业出版社,2011:237.
  • 2ALEX K,ILYA S,HINTON G E.ImageNet classification with deep convolutional neural networks[EB/OL].[2015-02-10].http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf.
  • 3DAN C,UELI M,JURGEN S.Multi-column deep neural networks for image classification[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2012:3642-3649.
  • 4KAVUKCUOGLU K,SERMANET P,BOUREAU Y,et al.Learning convolutional feature hierarchies for visual recognition[EB/OL].[2015-02-10].http://cs.nyu.edu/-ylan/files/publi/koray-nips-10.pdf.
  • 5KAVUKCUOGLU K,RABZATO M,FERGUS R,et al.Learning invariant features through topographic filter maps[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2009:1605-1612.
  • 6COATES A,LEE H,NG A Y.An analysis of single-layer networks in unsupervised feature learning[C]//Proceedings of the 14th International Conference on Artificial Intelligence and Statistics.Piscataway,NJ:IEEE,2011:215-223.
  • 7ZEILER M D,FERGUS,R.Visualizing and understanding convolutional neural networks[C]//ECCV 2014:Proceedings of the 13th European Conference on Computer Vision.Berlin:Springer,2014:818-833.
  • 8BALDI P,LU ZHIQIN.Complex-valued autoencoders[J].Neural Networks,2012,33:136-147.
  • 9LECUN Y,BOTTOU L,BENGIO Y.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.
  • 10DERMANET P,LECUN Y.Traffic sign recognition with multi-scale convolutional networks[C]//Proceedings of the 2011 International Joint Conference on Neural Networks.Piscataway,NJ:IEEE,2011:2809-2813.

共引文献64

同被引文献96

引证文献12

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部