期刊文献+

一种能准确模拟波浪复杂演化过程的非静力学数值模型

A non-hydrostatic model for precise simulation of complex surface wave processes
下载PDF
导出
摘要 选取σ坐标系下的不可压缩Navier-Stokes方程组作为控制方程。将速度变量定义在计算单元的中心位置,同时将非静力学压力定义在计算单元竖直方向界面位置以便于结合Godunov型格式。采用有限体积和有限差分混合方法结合Godunov型格式对控制方程进行空间离散。利用HLL黎曼求解器求解计算单元之间的通量以实现激波捕捉,并采用二阶非线性强稳定性保持龙格库塔(SSP Runge-Kutta)格式进行时间步迭代。基于以上数值方法,文中发展了一种能准确模拟波浪复杂演化过程的非静力学数值模型。将非静力学数值模型用于数值模拟淹没式堤坝上波浪传播、孤立波沿斜坡爬高和海底滑坡诱发海啸三种波浪复杂演化过程,数值计算结果与相应的实验结果较为吻合。 The incompressible Navier-Stokes equations in conservative form written inσcoordinates are chosen as the governing equations.In order to apply a Godunov-type scheme,the velocities are defined at cell centers,and the dynamic pressure is defined at vertically facing cell faces.A combined finite-volume and finite-difference scheme with a Godunov-type method is applied to discretize the governing equations.The HLL Riemann approximation is employed to estimate fluxes at cell faces.The nonlinear Strong Stability-Preserving(SSP)Runge-Kutta scheme is adopted for time stepping.Based on above numerical methods,a non-hydrostatic model for precise simulation of complex surface wave processes is developed.The model is validated using three test cases based on experimental data,respectively periodic wave propagation over a submerged bar,solitary wave run-up along a slope beach and tsunami generation by underwater landslides.The numerical results are in good agreement with the corresponding experimental data.
作者 陈善群 吴昊 汤润超 CHEN Shan-qun;WU Hao;TANG Run-chao(College of Architecture Engineering,Anhui Polytechnic University,Wuhu 241000,China)
出处 《船舶力学》 EI CSCD 北大核心 2018年第11期1342-1353,共12页 Journal of Ship Mechanics
基金 安徽省高校优秀青年人才支持计划项目(gxyq2017015) 安徽工程大学研究生实践与创新基金项目(2017)
关键词 Σ坐标 Godunov型格式 非静力学 HLL黎曼求解器 σcoordinate Godunov-type scheme non-hydrostatic HLL Riemann approximation
  • 相关文献

参考文献1

二级参考文献9

  • 1Zhou J G,Causon D M,Mingham C G,et al.The surface gradient method for the treatment of source terms in the shallow-water equations[J].J Comput Phys,2001,168:1-25.
  • 2Garcia-Navarro P,Vazquez-Cendon M E.On numerical treatment of the source terms in the shallow water equations[J].Computers & Fluids,2000,29:951-979.
  • 3TSENG Ming-Hseng.Improved treatment of source terms in TVD scheme for shallow water equations[J].Advances in Water Resources,2004,27:617-629.
  • 4LeVeque R J.Wave propagation algorithms for multidimensional hyperbolic systems[J].J Comput Phys,1997,131:327-353.
  • 5LeVeque R J.Balancing source terms and flux gradients in high-resolution Godunov methods:the quasi-steady wave-propagation algorithm[J].J Comput Phys,1998,146:346-365.
  • 6Anastasiou K,Chan C T.Solution of the 2-D shallow water equations using the finite volume method on unstructured triangular meshes[J].Int J Numer Meth Fluids,1997,24:1225-1245.
  • 7Hof B Van't,Vollebregt E A H.Modelling of wetting and drying of shallow water using artificial porosity[J].Int J Numer Meth Fluids,2005,48:1199-1217.
  • 8MacDonald I.Analysis and Computation of Steady Open Channel Flow[D].Reading,UK:Department of Mathematics,University of Reading,1996.
  • 9Aureli F,Mignosa P,Tomirotti M.Numerical simulation and experimental verification of dam-break flows with shocks[J].J Hydraulic Res,2000,38:197-206.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部