期刊文献+

近似稀疏约束的多层非负矩阵分解高光谱解混 被引量:5

Approximate sparse regularized multilayer NMF for hyperspectral unmixing
原文传递
导出
摘要 稀疏正则化函数的选取直接影响到稀疏非负矩阵分解高光谱解混的效果。目前,主要采用L_0或L_1范数作为稀疏度量。L_0稀疏性好,但求解困难;L_1求解方便,但稀疏性差。提出一种近似稀疏模型,并将其引入到多层非负矩阵分解(AL_0-MLNMF)的高光谱解混中,将观测矩阵进行多层次稀疏分解,提高非负矩阵分解高光谱解混的精度,提升算法的收敛性。仿真数据和真实数据实验表明:该算法能够避免陷入局部极值,提高非负矩阵分解高光谱解混性能,算法精度上比其他几种算法都有较大的提升效果,RMSE降低0.001~1.676 7,SAD降低0.002~0.244 3。 The selection of sparse regularization functions directly affects the effect of sparse non-negative matrix factorization of hyperspectral unmixing.At present,the L0 or L1 norms are mainly used as sparse measures.L0 has good sparsity,but it is difficult to solve;L1 is easy to solve,but the sparsity is poor.An approximate sparse model was presented,and was applied to the multi-layer NMF(AL0-MLNMF)in hyperspectral unmixing.The algorithm made the observation matrix multilevel sparse decomposition improve the precision ofhyperspectral unmixing,and improve the convergence of the algorithm.The simulation data and real data show that the algorithm can avoid falling into the local extremum and improve the NMF hyperspectral unmixing performance.Algorithm accuracy has greater improvement effect than several other algorithm,RMSE reduces 0.001-1.676 7 and SAD reduces 0.002-0.244 3.
作者 徐晨光 邓承志 朱华生 Xu Chenguang;Deng Chengzhi;Zhu Huasheng(Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing,Nanchang Institute of Technology,Nanchang 330099,China)
机构地区 南昌工程学院
出处 《红外与激光工程》 EI CSCD 北大核心 2018年第11期257-265,共9页 Infrared and Laser Engineering
基金 江西省教育厅科技项目(GJJ151135) 国家自然科学基金(61461032) 国家自然科学基金(61865012)。
关键词 非负矩阵分解(NMF) 稀疏 混合像元 解混 non-negative matrix factorization(NMF) sparsity mixed pixels unmixing
  • 相关文献

参考文献6

二级参考文献31

  • 1张萌,赵慧洁,李娜.高光谱数据光谱分辨率对矿物识别的影响分析[J].红外与激光工程,2006,35(z4):493-498. 被引量:7
  • 2宋义刚,吴泽彬,韦志辉,孙乐,刘建军.稀疏性高光谱解混方法研究[J].南京理工大学学报,2013,37(4):486-492. 被引量:8
  • 3张兵.高连如.高光谱图像分类与目标探测[M].北京:科学出版社,2011.
  • 4Boardman J. Automating spectral unmixing of AVIRIS data using convex geometry concepts[C]//JPL Airborne Geoscience Workshop, JPL Publication 93-26, 1993, 1: 11-14.
  • 5Winter M E. N-Find: an algorithm for fast autonomous spectral end member determination in hyperspectral data[C]// SPIE' s International Sym- posium on Optical Science, Engineering, and Instrumentation. International Society for Optics and Photonics, 1999: 266-275.
  • 6Nascimento J M P, Bioucas-Dias J M. Vertex component analysis: A fast algorithm to unmix hyperspectral data [J]. IEEE Transactions on Geo- science and Remote Sensing, 2005, 43(4): 898-910.
  • 7Bayliss J, Gualtieri J. A nalyzing hyperspectral data with independent component analysis [C]//26th AIPR Workshop: Exploiting New Image Sources and Sensors. International Society for Optics and Photonics, 1998: 133-143.
  • 8Bioucas-Dias J M, Plaza A, Dobigeon N. Hyperspectral unmixing overview: geometrical, staffs- tical and sparse regression-based approaches [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2): 354-379.
  • 9Lee D D, Seung H S. Algorithms for non- negative matrix factorization[J]. Advances in Neural Information Processing Systems, 2001, 13: 556-562.
  • 10Chert Z, Cichocki A. Non-negative matrix factorization with temporal smoothness and/or spatial decorrelation constraints [J]. Laboratory for Advanced Brain Signal Processing, RIKEN, Tech Rep, 2005.

共引文献21

同被引文献13

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部