期刊文献+

一类变指数分数阶微分方程的多重解 被引量:3

Multiple Solutions for a Class of Fractional Differential Equation with Variable Exponents
下载PDF
导出
摘要 利用变分方法和分数阶变指数Sobolev空间理论,考虑带有p(x)-Laplace算子的分数阶微分方程,在具有局部超线性增长非线性项的条件下,得到了该类问题多重解存在的充分条件. By using variational methods and the theory of fractional variable exponent Sobolev space,the author investigated the fractional differential equation with p(x)-Laplacian operator,under the condition of local superlinear growth nonlinearity,some sufficient conditions for the existence ofmultiple solutions for this problem were obtained.
作者 张申贵 ZHANG Shengui(College of Mathematics and Computer Science,Northwest Minzu University,Lanzhou 730030,China)
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2018年第6期1324-1330,共7页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11401473) 甘肃省自然科学基金(批准号:1606RJZA003 17JR5RA284) 甘肃省高等学校科学研究项目(批准号:2016B-005) 西北民族大学中央高校基本科研业务费专项基金(批准号:31920180041)
关键词 分数阶微分方程 边值问题 临界点 p(x)-Laplace算子 fractional differential equation boundary value problem critical point p(x)-Laplacian operator
  • 相关文献

参考文献2

二级参考文献12

  • 1BertoinJ. Levy Processes[M]. Cambridge Tracts in Mathematics. 121. Cambridge: Cambridge University Press. 1996: 121.
  • 2Autuori G. Pucci P. Elliptic Problems Involving the Fractional Laplacian in IR N[J].J Differential Equations. 2013. 255(8): 2340-2362.
  • 3Barrios B. Colorado E. Pablo A. de. et al. On Some Critical Problems for the Fractional Laplacian Operator[J]. J Differential Equations. 2012. 252(11): 6133-6162.
  • 4Brandle C. Colorado E. Pablo A. de. A Concave-Convex Elliptic Problem Involving the Fractional Laplacian[J]. Proc Roy Soc Edinburgh Sect A, 2013. 143: 39-7l.
  • 5CHANG Xiaojun. Ground State Solutions of Asymptotically Linear Fractional Schrodinger Equations[J].J Math Phys , 2013. 54(6): 061504.
  • 6CHANG Xiaoj un , WANG Zhiqiang. Nodal and Multiple Solutions of Nonlinear Problems Involving the Fractional Laplacian[J].J Differential Equations. 2014, 256(8): 2965-2992.
  • 7Servadei R. Valdinoci E. Mountain Pass Solutions for Non-local Elliptic Operators[J].J Math Anal Appl , 2012. 389(2): 887-898.
  • 8Ros-Oton X. SerraJ. The Extremal Solution for the Fractional Laplacian[J]. . Calc Var Partial Differential Equations. 2014. 50(3/4): 723-750.
  • 9Ros-Oton X. SerraJ. The Dirichlet Problem for the Fractional Laplacian: Regularity up to the Boundary[J]. J Math Pures Appl , 2014. 101(3): 275-302.
  • 10Rabinowitz PH. Minimax Methods in Critical Point Theory with Applications to Differential Equations[M]. CBMS Regional Conference Series in Mathematics. Vol. 65. Providence. RI: American Mathematical Society. 1986.

共引文献9

同被引文献3

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部