期刊文献+

基于位存储Tid的CPU并行化Eclat算法 被引量:2

CPU Parallelization Eclat Algorithm Based on Bit Storage Tid
下载PDF
导出
摘要 Eclat算法采用垂直数据表示方式且无需复杂的数据结构,然而在挖掘频繁项目集过程中,交集计数的生成方式造成内存大量消耗和挖掘效率下降。为此,在分析Eclat算法及其现有改进算法基础上,提出一种位存储事务标识(Tid)的CPU并行化Eclat算法。该算法使用二进制位形式存储项目的 Tid,将挖掘频繁项目集的任务分配到CPU各个线程,最大限度地提高CPU的运算性能。实验结果表明,该算法能在降低内存使用的同时,提高频繁项目集的挖掘效率。 The Eclat algorithm uses vertical data representation and does not require complex data structures.However,the intersection count generation mode causes a large amount of memory consumption and low mining efficiency in the process of mining frequent itemsets.Therefore,based on the analysis of Eclat algorithm and its existing improved algorithm,a CPU parallelization Eclat algorithm for bit storing Transaction identifier(Tid)is proposed.The algorithm uses the binary bit form to store the Tid of the project,and distributes the tasks of mining frequent itemsets to each thread of the CPU,maximizing the computing performance of the CPU.Experimental results show that the algorithm can improve the mining efficiency of frequent itemsets while reducing memory usage.
作者 孙宗鑫 张桂芸 SUN Zongxin;ZHANG Guiyun(College of Computer and Information Engineering,Tianjin Normal University,Tianjin 300387,China)
出处 《计算机工程》 CAS CSCD 北大核心 2018年第12期79-84,共6页 Computer Engineering
基金 国家自然科学基金面上项目(61572358) 天津市自然科学基金面上项目(16JCYBJC23600)
关键词 频繁项目集挖掘 Eclat算法 位存储 CPU并行化 存储优化 Frequent Itemset Mining(FIM) Eclat algorithm bit storage CPU parallelization storage optimization
  • 相关文献

参考文献5

二级参考文献35

  • 1吴恩华,柳有权.基于图形处理器(GPU)的通用计算[J].计算机辅助设计与图形学学报,2004,16(5):601-612. 被引量:227
  • 2Jia-WeiHan,JianPei,Xi-FengYan.From Sequential Pattern Mining to Structured Pattern Mining: A Pattern-Growth Approach[J].Journal of Computer Science & Technology,2004,19(3):257-279. 被引量:18
  • 3杜剑峰,李宏,陈松乔,陈建二.单调和反单调约束条件下关联规则的挖掘算法分析[J].计算机科学,2005,32(6):142-144. 被引量:3
  • 4李敏,李春平.频繁模式挖掘算法分析和比较[J].计算机应用,2005,25(B12):166-171. 被引量:11
  • 5AGRAWAL R, SRIKANT R. Fast Algorithms for min- ing association rules [C]// Proceedings of 20th Interna- tional Conference on Very Large Data Bases. Santiago, Chile: Morgankaufman, 1994:487 - 499.
  • 6HAN J, PEI J, YIN Y. Mining frequent patterns with- out candidate generation [C]/// Proeeedlngs of the 2000 ACM Data. Dallas, United States: ACM, 2000:1-12.
  • 7FENG Pei-en, ZHANG Hui, QIU Qing-ying, et al. PCAR: an efficient approach for mining association rules [C]/// Proceedings of the ICNC-FSKD 2008 Inter- national Conference on Fussy Systems and Knowledge Dis- covery. Jinan: IEEE, 2008:605-609.
  • 8ZAKI M J. Scalable algorithms for association mining[J]. IEEE Transactions on Knowledge and Data Engi- neering, 2000,12(3) : 372- 390.
  • 9ZAKI M J. Fast vertical mining using diffsets [R]. Technical Report 01-1, Troy, New York: Rensselaer Polytechnic Institute. 2001.
  • 10HAN J, KAMBE M. Data mining: concepts and Tech- niques [M]. San Francisco, United States: Morgan Kaufmann Publishers Inc, 2001 : 231.

共引文献42

同被引文献17

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部