期刊文献+

用轻量化卷积神经网络图像语义分割的交通场景理解 被引量:11

Traffic scene understanding using image semantic segmentation with an improved lightweight convolutional-neural-network
下载PDF
导出
摘要 为提高汽车自动驾驶系统中视觉感知模块的鲁棒性,提出了使用图像语义分割方法进行交通场景理解。采用基于深度学习的语义分割方法,设计了兼顾运行速度和准确率的轻量化卷积神经网络。在特征提取部分,用轻量化特征提取模型MobileNetV2结构,用可变形卷积代替步长为2的卷积层;在特征解码部分,缩减卷积核数目、引入多尺度的空洞可变形卷积,补充低层特征细节。用扩充的Pascal VOC 2012数据集进行预训练和评估,用交通场景数据集Cityscapes进行测试。结果表明:该网络结构的准确率达到了平均交互比(mean IoU) 69.2%,超过了用MobileNetV2的DeepLab语义分割网络,运行速度127 ms/帧,占内存1.073 GB,优于使用VGG-16、ResNet-101的结果。 A method of traffic scene understanding was proposed using image semantic segmentation method to improve the robustness of a visual perception model in an automotive autonomous driving system.A lightweight convolutional-neural-network was designed adopting semantic segmentation using deep learning with striking an optimal balance between efficiency and performance.The lightweight model,Mobile Net V2,was adopted in the feature-extraction section,and the convolution layers were replaced using stride=2with deformable convolution layers;In feature-decoder section,multi-scale Atrous deformable convolution module was designed and low-level features were also used to add more detail information.Augmented PASCAL VOC2012dataset was used to pre-train and evaluate the network and the traffic scene dataset,Cityscapes,was used to fine-tune and test.The results show that the new network achieves an accuracy of mean IoU(intersection over union)of69.2%,and has better performances than that from DeepLab semantic segmentation networks with MobileNetV2.The new network takes only127ms per frame and1.073GB memory and is more efficient than that by the networks with VGG-16and ResNet-101.
作者 白傑 郝培涵 陈思汉 BAI Jie;HAO Peihan;CHEN Sihan(School of Automotive Studies, Tongji University, Shanghai 201804, China)
出处 《汽车安全与节能学报》 CAS CSCD 2018年第4期433-440,共8页 Journal of Automotive Safety and Energy
基金 国家重点研发计划(2016YFB0101101)
关键词 汽车自动驾驶 场景理解 视觉感知 图像语义分割 轻量化卷积神经网络 深度学习 automotive autonomous driving scene understanding visual perception image semantic segmentation lightweight convolutional neural network deep learning
  • 相关文献

参考文献3

二级参考文献41

  • 1朱立新,王平安,夏德深.非线性扩散图像去噪中的耦合自适应保真项研究[J].计算机辅助设计与图形学学报,2006,18(10):1519-1524. 被引量:12
  • 2ZHOU Jie, GAO Dashan , ZHANG David. Moving vehicle detection for automatic traffic monitoring [J]. IEEE Trans Vehicular Technology, 2007, S60), 51 - 59.
  • 3Barnich 0, Droogenbroeck V M. ViBE, A powerful random technique to estimate the background in video sequences [C]/ /Proc IEEE Int Conf Acoustics, Speech, and Signal Processing, Taipei, China, IEEE Press, 2009, 945 - 948.
  • 4Massimo P. Background subtraction techniques, a review [C]// Proc IEEE Int Conf Systems, Man, Cybernetics, Hague, IEEE Press, 2004, 3099 - 3104.
  • 5Cheon M, Lee W, Yoon C, Park M. Vision-based vehicle detection system with consideration of the detecting location [J], IEEE Trans l ntell ig ent Transportation Systems, 2009, 13(3), 1243 -1252.
  • 6CAO Xianbin , WU Changxia , Y AN Pingkun , LI Xuelong. Linear SVM classification using boosting HOG features for vehicle detection in low-altitude airborne videos [C]/ / Proc 18th IEEE Int Conf Image Processing, Brussels, IEEE Press, 2011, 2421 - 2424.
  • 7TAN Feng , LI Luoxin , CAl Bo, ZHANG Dengyi. Shape template based side-view car detection algorithm [C]/ / Proc 3rd Int Workshop on Intelligent Systems and Applications, WuHan, China, IEEE Press, 2011, 28 - Z9.
  • 8CAl Bo, TAN Feng, LU Yi, ZHANG Dengyi. Knowledge template based multi-perspective car recognition algorithm [J]. Int Journal of Information Engineering and Electronic Business, ZOI0, 2(2), 38 - 45.
  • 9Viola P, Jones M. Rapid objects detection using a boosted cascade of simple features [C]/ / Proc IEEE Conf on Computer Vision and Pattern Recognition, Kauai , IEEE Press, ZOOl, 511 - 518.
  • 10Dalal N, Triggs B. Histograms of oriented gradients for human detection [C]/ / Proc IEEE Conf Computer Vision and Pattern Recognition, S. Diego, IEEE Press, 2005, 886 - 893.

共引文献14

同被引文献97

引证文献11

二级引证文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部