期刊文献+

基于卷积神经网络的红外热成像罐车内壁裂纹识别 被引量:5

Inner Crack Identification on Car Tanks Using Thermal Imaging Based on Convolutional Neural Network
下载PDF
导出
摘要 针对传统无损检测技术在罐车内壁裂纹检测中效率低、抗干扰能力差等问题,提出一种基于卷积神经网络的热成像裂纹识别方法。研制了一种滚动式电加热棒作为热激励源,并采用新的激励方式对被检测表面进行热激励;根据热量传输过程中遇到裂纹时温度产生异常的原理,对被检测表面裂纹进行判断;采集热激励后的红外热图像作为训练样本,并搭建5层卷积神经网络对样本进行训练。实验表明,利用红外热成像与卷积神经网络可以对裂纹进行准确识别;检测效率高、鲁棒性强;并且在测试集上识别准确率达到96.50%。 To solve the problems of low efficiency and poor anti-jamming ability in the detection of cracks on the inner wall of truck tanks using traditional non-destructive testing techniques,this paper proposes a thermal imaging crack recognition method based on convolutional neural network(CNN).A rolling electric heating rod was developed as a thermal excitation source,and a new excitation method was used to thermally stimulate the surface to be inspected.According to the principle of abnormal temperature generated during the heat transfer process,the surface crack was detected.The thermally excited infrared thermal images are used as training samples,and a six-layer CNN was built to train on the samples.Experiments show that infrared thermal imaging and the CNN can accurately identify the cracks.The detection efficiency is high and the model is robust.Furthermore,the recognition accuracy on the test set reaches 96.50%.
作者 王威 李青 孙叶青 钟海见 夏新华 WANG Wei;LI Qing;SUN Yeqing;ZHONG Haijian;XIA Xinhua(National and Local Joint Engineering Laboratories for Disaster Monitoring Technologies and Instruments,China Jiliang University,Hangzhou 310018,China;Zhejiang Institute of Special Equipment Inspection,Hangzhou 310020,China)
出处 《红外技术》 CSCD 北大核心 2018年第12期1198-1205,共8页 Infrared Technology
基金 国家质量监督检验检疫总局科技计划项目(2014QK198)
关键词 罐车 裂纹检测 热成像 卷积神经网络 tanker crack detection thermal imaging convolutional neural network
  • 相关文献

参考文献10

二级参考文献76

共引文献84

同被引文献42

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部