期刊文献+

高铁站定制性灵活线路接驳巴士路径优化 被引量:3

Route optimization of customized flexible line feeder bus for the high-speed rail station
下载PDF
导出
摘要 立足综合运输,考虑高铁的速度优势和接驳车辆的机动灵活特点,建立高铁旅客出行需求灵活接驳运输模式。基于交通网络的动态性及乘客需求的定制性和动态性,以乘客成本、接驳巴士运营成本及乘客等待时间成本为目标,建立高铁站定制性灵活线路接驳巴士路径优化模型,并将该模型分为预排班和实时需求2个子模型。根据该模型的特点,采用改进的蚁群算法求解模型,并构造了一个虚拟的交通网络,验证了该模型及其算法的有效性。 Based on comprehensive transportation,full consideration is given to the speed advantage of high-speed rail and the flexible features of connected vehicles to establish a flexible connection mode for high-speed passengers to travel.Based on the dynamic nature of traffic networks,and the customization and dynamics of the passenger demand,with the goal of passenger costs,operating costs of feeder buses and passenger waiting time costs,a customized flexible route feeder bus route optimization model for high-speed rail stations has been established.It is divided into two sub-models:Pre-arrangement model and real-time demand.According to the characteristics of the model,an improved ant colony algorithm is used to solve the model.A virtual traffic network was constructed to verify the validity of the model and the algorithm.
作者 祁航 周和平 苏贞旅 QI Hang;ZHOU He-ping;SU Zhen-lv(School of Traffic and Transportation Engineering,Changsha University of Science &Technology,Changsha 410114,China)
出处 《交通科学与工程》 2018年第4期71-76,共6页 Journal of Transport Science and Engineering
基金 国家自然科学基金资助项目(51178061)
关键词 定制性 灵活线路 接驳巴士 动态路径优化 蚁群算法 customization flexible line feeder bus dynamic route optimization ant colony optimization
  • 相关文献

参考文献2

二级参考文献29

  • 1侯立文,谭家美,赵元.求解带时间窗的客户需求可分条件下的车辆路径问题[J].中国管理科学,2007,15(6):46-51. 被引量:18
  • 2刘云忠,宣慧玉.动态蚁群算法在带时间窗车辆路径问题中的应用[J].中国工程科学,2005,7(12):35-40. 被引量:8
  • 3李兵,郑四发,曹剑东,杨扬,耿华,连小珉.求解客户需求动态变化的车辆路径规划方法[J].交通运输工程学报,2007,7(1):106-110. 被引量:30
  • 4马良,朱刚,宁爱兵.蚁群优化算法[M].北京:科学出版社,2008,2.
  • 5Dantizig G, Ramser J. The truck dispatching problem[J]. Management Science, 1959, 6(1): 80-91.
  • 6Gambardella L M, Taillard R, Agazzi G. MACS-VRPTW: A multiple ant colony system for vehicle routing problems with time windows[J]. New Ideas in Optimization, 1999: 63-76.
  • 7Kolen A, Rnnooy Kan A, Trienekens H. Vehicle routing with time windows[J]. Operations Research, 1987, 35(2): 266-273.
  • 8Dorigo M, Maniezzo V, Colorni A. Ant system: Optimization by a colony of cooperating agents[J]. IEEE Transactions On Systems, Man, and Cybernetics, 1996, 26(1): 29-41.
  • 9Deutsch D. Quantum computational networks[C]// Proc Roy Soc London, 1988, A. 425: 73-90.
  • 10Shor P W. Algorithms for quantum computation[C]// Discrete Logarithms and Factoring, Proc of the 35th Annual Symp on Foundations of Computer Science, New York, USA: IEEE Computer Society Press, 1994, 11: 124-134.

共引文献112

同被引文献16

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部