期刊文献+

基于火焰体积法的燃烧室熄火特性数值模拟预测

Numerical simulation prediction of aero-engine combustor flameout characteristics based on flame volum method
下载PDF
导出
摘要 以旋流燃烧室为研究对象,通过数值模拟提取火焰体积数据,将仅用于描述贫熄实验数据规律的火焰体积法发展为预测贫熄特性的方法。该方法以临熄火时的火焰体积代替传统预测方法中的火焰筒体积,提高了贫熄预测的精度与通用性。在保证预测精度的前提下,基于流动相似原理,将改进的火焰体积法推广到高温高压工况。分析了旋流器、主燃孔等的流通面积对贫熄特性的影响,发现旋流器空气流量对贫熄特性具有十分重要的影响。不论是改变旋流器流通面积,还是改变主燃孔流通面积,只要导致旋流器空气流量比例增大,贫熄油气比就增大;反之则减小。在研究的基准工况下,贫熄油气比的预测误差在±24%以内,远小于相同工况下传统模型-90%以上的预测误差。 Taking swirl combustor as the study object, flame volume data was acquired by numerical simulation to develop flame volume method. The flame volume method was used to describe lean burn test data rule and now can predict lean flameout characteristics. The flame volume method took flame volume near flameout to replace liner volume in conventional prediction method to improve accuracy and versatility. Based on flow similarity principle, the developed flame volume method was extended to high pressure and high temperature conditions while the prediction accuracy was acceptable. The influence of swirler and primary hole flow areas on lean flameout characteristics was studied. The result indicated that the swirler flow rate had important effects on lean flameout characteristics. The lean flameout fuel-air ratio increased as long as the ratio of the swirler flow increased, whether the swirler flow area or the primary hole flow area changed or not. Under the basic operation condition in this study, the prediction error of the lean flameout characteristics is less than ±24%, while the error of the classical model is more than -90%.
作者 黄夏 王慧汝 HUANG Xia;WANG Hui-ru(Basic and Applied Research Center,Aero Engine Academy of China,Beijing 101304,China)
出处 《燃气涡轮试验与研究》 北大核心 2018年第6期8-13,35,共7页 Gas Turbine Experiment and Research
基金 航空动力基金(6141B090311)
关键词 航空发动机 燃烧室 贫油熄火特性预测 火焰体积法 火焰筒结构 高温高压 aero-engine combustor lean flameout characteristic prediction flame volume method liner structure high temperature and high pressure
  • 相关文献

参考文献5

二级参考文献65

  • 1马文杰,樊未军,侯木玉,杨茂林.空气分级对燃烧室燃烧及污染物排放的影响[J].燃烧科学与技术,2004,10(4):345-349. 被引量:5
  • 2樊未军,严明,易琪,杨茂林.富油/快速淬熄/贫油驻涡燃烧室低NO_x排放[J].推进技术,2006,27(1):88-91. 被引量:31
  • 3Lefebvre A H. Fuel effects on gas turbine combustion: Ignition, stability, and combustion efficiency[J]. ASME Journal of Engineering for Gas Turbines and Power, 1985, 107: 24-37.
  • 4Longwell J P, Frost E E, Weiss M A. Flame stability in bluff body recirculation zones[J]. Ind Eng Chem, 1953, 45(8) : 1629-1633.
  • 5Zukowski E E, Marbel F E. The Role of Wake Transition in the Process of Flame Stabilization on Bluff Bodies [R]. AGARD Combustion Researches and Reviews, USA, 1955.
  • 6Von Elbe Guenther, Lewis Bernard. Theory of igniteion, quenching and stabilization of flames of nonturbulent gas mixtures [C]//Third Symposium on Combustion Flame and Explosion Phenomena. Baltimore, Maryland: The Williams & Wilkins Company, 1949.
  • 7Lewis Bemard, von Elbe Guenther. Combustion. Flames and Explosions of Gases[M]. 3rd ed. New York and London: Academic Press Inc, 1987.
  • 8Kuo Kenneth K. Principles of Combustion [M]. 2nd ed Canada: John Wiley & Sons, Inc, 2005.
  • 9Law Chung K. Combustion Physics[M]. New York: Cambridge University Press, 2006.
  • 10Glassman Irvin, Yetter Richard A. Combustion [M]. 4th ed. Burlington, San Diego and London: Elsevier Inc, 2008.

共引文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部