期刊文献+

多维空间可调整的近邻传播聚类算法 被引量:4

Multidimensional Spatial Adjustable Affinity Propagation Clustering Algorithm
下载PDF
导出
摘要 针对近邻传播算法不适合处理多重尺度和任意形状数据的问题,提出了一种基于多维空间可变换的MSAAP(multidimensional similarity adaptive affinity propagation)算法。首先,通过熵值法计算数据样本点的属性权重;然后,根据属性权重构造出一种新型计算相似性矩阵的方法;最后,根据属性权重的优先级将样本点的空间划分成若干个空间块,并计算空间块的吸引度和归属度之和,进而调整样本点的空间分布。通过13个不同形状的UCI数据集和3个人脸数据库进行对比实验,从准确率、算法时间、聚类个数3个维度去分析,最终实验结果证明所提出的MSAAP算法聚类效果更优。 In view of the problem that the affinity propagation algorithm is not suitable for dealing with multiple scales and arbitrary shape data, this paper presents an MSAAP(multidimensional similarity adaptive affinity propagation) algorithm based on multidimensional spatial transform. First, the attribute weight of the data set is calculated by the entropy method. Second, this paper puts forward a new method of computing the similarity matrix based on attribute weights. Last, this paper divides the spatial space of the sample points into several spatial blocks according to the priority of the attribute weights, calculates the degree of appeal and the degree of attribution of the space block, and then adjusts the spatial distribution of particles. This paper uses 13 UCI data sets and 3 face databases to do comparative experiments, and then from the accuracy rate, the algorithm time, the number of clusters to analyze the 3 dimensions. Finally, the experimental results show that the MSAAP clustering effect is better.
作者 钱雪忠 王卫涛 QIAN Xuezhong;WANG Weitao(School of Internet of Things Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China)
出处 《计算机科学与探索》 CSCD 北大核心 2019年第1期116-127,共12页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金No.61673193 中央高校基本科研业务费专项资金Nos.JUSRP51635B JUSRP51510~~
关键词 近邻传播 多维空间 属性权重 空间分布 affinity propagation multidimensional space attribute weight spatial distribution
  • 相关文献

参考文献3

二级参考文献27

  • 1Frey B J and Dueck D. Clustering by passing messages between data points. Science, 2007, 315(5814): 972-976.
  • 2Givoni I E and Frey B J. A binary variable model for affinity propagation. Neural Computation, 2009, 21(6): 1589-1600.
  • 3Jia Sen, Qian Yun-tao, and Ji Zhen, Band hyperspectral imagery using affinity. Proceedings of the 2008 Digital Image Techniques and Applications, Canberra, ACT selection for Propagation. Computing: 1-3.12.2008:137-141.
  • 4Gang Li, Lei brain MR International (ISCAS 2009) Guo, and Liu Tian-ming, et at. Grouping of images via affinity propagation. IEEE Symposium on Circuits and Systems, 2009 Taipei, Taiwan, 5.24. 2009: 2425-2428.
  • 5Dueck D, Frey B J, and Jojic N, et al. Constructing treatment portfolios using affinity propagation[C]. Proceedings of 12th Annual International Conference, RECOMB 2008. Singapore. 3.30-4.2, 2008: 360-371.
  • 6Leone M, Sumedha, and Weigt M. Clustering by soft-constraint affinity propagation: applications to gene- expression data. Bioinformatics, 2007, 23(20): 2708-2715.
  • 7Alexander Hinneburg and Daniel A Keim. A general approach to clustering in large databases with noise. Knowledge and Information Systems, 2003, 5(4): 387-415.
  • 8Little M A, McSharry P E, Hunter E J, and Lorraine O. Suitability of dysphonia measurements for telemonitoring of Parkinson's disease. IEEE Transactions on Biomedical Engineering, 2009, 56(4): 1015-1022.
  • 9王玲,薄列峰,焦李成.密度敏感的半监督谱聚类[J].软件学报,2007,18(10):2412-2422. 被引量:95
  • 10王开军,张军英,李丹,张新娜,郭涛.自适应仿射传播聚类[J].自动化学报,2007,33(12):1242-1246. 被引量:145

共引文献197

同被引文献28

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部