期刊文献+

电网大数据云存储算法的研究 被引量:2

Research on Storage Algorithm of Power Grid Big Data Cloud
下载PDF
导出
摘要 在分布式云计算系统中,数据密集型计算可导致数据中心间的数据调度,而合理的数据分布式存储可有效减少数据中心间的数据调度,提高用户的数据存储和计算效率。为此,建立数据中心间数据调度的数学模型,通过遗传算法的全局优化能力和迭代产生更好的近似解,得到数据存储的最佳逼近。试验结果表明,遗传算法可有效计算近似最优的数据分布式存储,并最大限度减少数据中心间的数据调度。 In distributed cloud computing systems,data-intensive computing can lead to data scheduling between data centers.Reasonable data distributed storage can effectively reduce data scheduling between data centers and improve user data storage and computing efficiency.A mathematical model for data scheduling between data centers was estabilised.Through the global optimization ability of the genetic algorithm,a better approximate solution was generated through iteration,and the best approximation of the data storage was finally obtained.The experimental results showed that the genetic algorithm could effectively calculate the approximate optimal data distributed storage,and minimized the data scheduling between data centers.
作者 党倩 李策 王刚 吴天宇 DANG Qian;LI Ce;WANG Gang;WU Tianyu(State Grid Gansu Provincial Electric Power Company Information and Communication Company,Lanzhou 730000,China;Gansu Tongxing Intelligent Technology Development Co.,Ltd.,Lanzhou 730000,China)
出处 《电工技术》 2018年第23期33-37,49,共6页 Electric Engineering
关键词 云计算 电力大数据 数据布局 遗传算法 数据调度 cloud computing power big data data layout genetic algorithm data scheduling
  • 相关文献

参考文献14

二级参考文献123

  • 1张科,董亮,邹澄澄.利用云计算技术建立电力信息系统硬件资源池[J].湖北电力,2014,38(6):1-3. 被引量:12
  • 2张甜甜,崔立真.基于释放和重构的科学工作流数据布局策略[J].计算机研究与发展,2013,50(S2):71-76. 被引量:3
  • 3刘东,闫红漫,丁振华,袁智强,王勇.SCADA主站系统集成测试技术研究[J].电网技术,2005,29(2):62-67. 被引量:14
  • 4陈志诚,魏军,曾斌.基于文件的高速采样数据存储系统设计[J].武汉理工大学学报(信息与管理工程版),2006,28(8):72-74. 被引量:3
  • 5WBITET.Hadoop权威指南[M].2版.北京:清华大学出版社,2011:44-49.
  • 6ONION A. Number-crunching GRAPE 6[M/OL]. (2000-06-02). http: JJgrape.mtk.nao.ac.jp/grape/news/ABC/ABC-cuttingedge000602. html.
  • 7San Diego Supercomputer Center. SDSC's 'Gordon' supercom- purer : ready for researchers [M/OL]. (2012-03-05). http://www. sdsc.edu/News%20Items/PR030512 gordon.html.
  • 8QI Runping. RAID vs. JBOD[M/OLI. (2009-01-14). http:// markmail.org/message/xmzc45zi25htr7ry.
  • 9REEVES G,LIU J,NATI-I S,et al. Managing massive time se- ries streams with multi-scale compressed trickles[C]//The 35th International Conference on Very Large Databases. Lyon, France :VLDB,2009:97-108.
  • 10DAS K,BHA/)URI K,ARORA S. Scalable distributed change detection from astronomy data streams using local,asynchronous eigen monitoring algorithms[C]//Proceedings of the SIAM Inter- national Conference on Data Mining. Sparks,Nevada,USA: [s.n.l, 2009: 247-258.

共引文献145

同被引文献18

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部